• 제목/요약/키워드: effective properties

검색결과 5,450건 처리시간 0.029초

슬래그를 혼합한 고온형 벨라이트 시멘트의 특성 (Properties of the Active Belite Cement with Slag)

  • 안태호;박동철;심광보;최상홀
    • 한국세라믹학회지
    • /
    • 제36권6호
    • /
    • pp.599-603
    • /
    • 1999
  • In an effort to improve the mechanical properties of the belite cement active belite cement clinker was synthesized. Properties of the clinker were characterized by a XRD, FT-IE optical microscopy and SEM. The additive effects of slag on the hydration properties were investigated by the measurement of compressive strength heat evolution and SEM. The experimental results exhibited that the 3wt% borax was effective in stabilizing $\alpha$'-C2S and the addition of 5wt% anhydrite and 40wt% slag wee effective in the hydration.

  • PDF

High concentration ratio approximation of linear effective properties of materials with cubic inclusions

  • Mejak, George
    • Coupled systems mechanics
    • /
    • 제7권1호
    • /
    • pp.61-77
    • /
    • 2018
  • This paper establish a high concentration ratio approximation of linear elastic properties of materials with periodic microstructure with cubic inclusions. The approximation is derived using first few terms of power series expansion of the solution of the equivalent eigenstrain problem with a homogeneous eigenstrain approximation. Viability of the approximation at high concentration ratios is proved by comparison with a numerical solution of the homogenization problem. To this end some theoretical result of symmetry properties of the homogenization problem are given. Using these results efficient numerical computation on a reduced computational domain is presented.

Time-dependent and inelastic behaviors of fiber- and particle hybrid composites

  • Kim, Jeong-Sik;Muliana, Anastasia
    • Structural Engineering and Mechanics
    • /
    • 제34권4호
    • /
    • pp.525-539
    • /
    • 2010
  • Polymer matrix composites are widely used in many engineering applications as they can be customized to meet a desired performance while not only maintaining low cost but also reducing weight. Polymers can experience viscoelastic-viscoplastic response when subjected to external loadings. Various reinforcements and fillers are added to polymers which bring out more complexity in analyzing the timedependent response. This study formulates an integrated micromechanical model and finite element (FE) analysis for predicting effective viscoelastic-viscoplastic response of polymer based hybrid composites. The studied hybrid system consists of unidirectional short-fiber reinforcements and a matrix system which is composed of solid spherical particle fillers dispersed in a homogeneous polymer constituent. The goal is to predict effective performance of hybrid systems having different compositions and properties of the fiber, particle, and matrix constituents. A combined Schapery's viscoelastic integral model and Valanis's endochronic viscoplastic model is used for the polymer constituent. The particle and fiber constituents are assumed linear elastic. A previously developed micromechanical model of particle reinforced composite is first used to obtain effective mechanical properties of the matrix systems. The effective properties of the matrix are then integrated to a unit-cell model of short-fiber reinforced composites, which is generated using the FE. The effective properties of the matrix are implemented using a user material subroutine in the FE framework. Limited experimental data and analytical solutions available in the literatures are used for comparisons.

원형 다공 평판의 면내 유효 물성치 계산 (Evaluation of In-Plane Effective Properties of Circular-Hole Perforated Sheet)

  • 정일섭
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.181-188
    • /
    • 2004
  • Structural analysis for materials containing regularly spaced in-homogeneities is usually executed by using averaged material properties. For the homogenization process, a unit cell is defined and loaded somehow, and its response is investigated to evaluate the properties. The imposed loading conditions should accord to the behavior of unit cell immersed in the macroscopic structure in order to guarantee the accuracy of the effective properties. Each unit cell shows periodic variation of strain if the material is loaded uniformly, and in this study, direct implementation of this characteristic behavior is attempted on FE models of unit cell. Conventional finite element analysis tool can be used without any modification, and the boundary of unit cell is constrained in a way that the periodicity is satisfied. The proposed method is applicable to skew arrayed in-homogeneity problems. The flexibility matrix relating tonsorial stress and strain components in skewed rectilinear coordinate system is transformed so that the required engineering constants can be evaluated. Effective properties are computed for the materials with square and skew arrayed circular holes, and its accuracy is examined.

굴곡각에 따른 3차원 평직 복합재료의 등가 물성치 예측 (Crimp Angle Dependence of Effective Properties for 3-D Weave Composite)

  • 최윤선;우경식
    • Composites Research
    • /
    • 제29권1호
    • /
    • pp.33-39
    • /
    • 2016
  • 본 논문에서는 3차원 평직 복합재료의 3-방향 섬유다발의 굴곡각에 따른 다양한 모델링을 구축하고, 제시한 모델에 대하여 등가 물성치를 예측하였다. 3차원 평직복합재료의 단위셀을 정의하고 미시역학 계산결과인 섬유다발 물성치를 사용하여 섬유다발에 굴곡각에 따라 물성치가 변화하도록 요소 물성축을 설정 후 3차원 평직 복합재료의 중시해석을 수행하였다. 계산결과 등가물성치는 참고문헌에 제시된 해석 및 실험값을 비교하여 타당성을 확보하였으며 계산결과 3-방향 섬유다발 굴곡각이 미치는 영향에 대하여 고찰하였다. 또한 초기파손 강도와 파손순서에 대해서도 조사하였다.

우리나라 중요목조문화재의 효과적 화재진압을 고려한 기본특성분석에 관한 연구 (The study of basic quality analysis for an effective fire suppression of the main temple properties in Korea)

  • 정은지;신호준;이지향;김정호;백민호
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 추계학술논문발표회 논문집
    • /
    • pp.471-478
    • /
    • 2008
  • This study grasps the type and site area of properties, the size of properties, the distance between the wooden properties and fire station, the direction of a fire engine in the wooden properties, the member of self-protection, and the present condition of fire fighting. And the 121 main temples properties in Korea is researched for an effective fire suppression.

  • PDF

선형구조방정식을 이용한 의복착용쾌적감 영향요인 분석 (An Analysis of Effective Variables on Clothing Wear Comfort Using Linear Structural Equation)

  • 이은주;조정숙;이정주;최종명;조길수
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1997년도 한국감성과학회 연차학술대회논문집
    • /
    • pp.47-52
    • /
    • 1997
  • This study was carried out to investigate effects of fabric properties and the changes of microclimates on comfort sensations and to identify effective varuables on clothing wear comfort sensations. A wied range of nontreated and functionally treated woven fabrics, knits, and nonwoven fabrics and test garments made of them were used as specimens. Linear structural equation was used to analyze causal relation among the variables on a path diagram. The results were as follows: 1. Almost of causal relations among variables were significant excdpt the effects of fabric properties including air permeability and water-vapor permebility on the changes of microclimate temperature. 2. Fabric properties were most effective variables on clothing wear comfort sensations including thermal sensation, subjeceive wettedness, and overall comfort and therefore comfort sensations and fabric properties were identified for improving clothing comfort.

  • PDF

Homogenized thermal properties of 3D composites with full uncertainty in the microstructure

  • Ma, Juan;Wriggers, Peter;Li, Liangjie
    • Structural Engineering and Mechanics
    • /
    • 제57권2호
    • /
    • pp.369-387
    • /
    • 2016
  • In this work, random homogenization analysis for the effective thermal properties of a three-dimensional composite material with unidirectional fibers is presented by combining the equivalent inclusion method with Random Factor Method (RFM). The randomness of the micro-structural morphology and constituent material properties as well as the correlation among these random parameters are completely accounted for, and stochastic effective thermal properties as thermal expansion coefficients as well as their correlation are then sought. Results from the RFM and the Monte-Carlo Method (MCM) are compared. The impact of randomness and correlation of the micro-structural parameters on the random homogenized results is revealed by two methods simultaneously, and some important conclusions are obtained.

Influence of the microstructure on effective mechanical properties of carbon nanotube composites

  • Drucker, Sven;Wilmers, Jana;Bargmann, Swantje
    • Coupled systems mechanics
    • /
    • 제6권1호
    • /
    • pp.1-15
    • /
    • 2017
  • Despite the exceptional mechanical properties of individual carbon nanotubes (CNTs), the effective properties of CNT-reinforced composites remain below expectations. The composite's microstructure has been identified as a key factor in explaining this discrepancy. In this contribution, a method for generating representative volume elements of aligned CNT sheets is presented. The model captures material characteristics such as random waviness and entanglement of individual nanotubes. Thus it allows studying microstructural effects on the composite's effective properties. Simulations investigating the strengthening effect of the application of a pre-stretch on the CNTs are carried out and found to be in very good agreement with experimental values. They highlight the importance of the nanotube's waviness and entanglement for the mechanical behavior of the composite. The presented representative volume elements are the first to accurately capture the waviness and entanglement of CNT sheets for realistically high volume fractions.

Assessment of Equivalent Elastic Modulus of Perforated Spherical Plates

  • JUMA, Collins;NAMGUNG, Ihn
    • 한국압력기기공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.8-17
    • /
    • 2019
  • Perforated plates are used for the steam generator tube-sheet and the Reactor Vessel Closure Head in the Nuclear Power Plant. The ASME code, Section III Appendix A-8000, addresses the analysis of perforated plates, however, this analysis is only limited to the flat plate with a triangular perforation pattern. Based on the concept of the effective elastic constants, simulation of flat and spherical perforated plates and their equivalent solid plates were carried out using Finite Element Analysis (FEA). The isotropic material properties of the perforated plate were replaced with anisotropic material properties of the equivalent solid plate and subjected to the same loading conditions. The generated curves of effective elastic constants vs ligament efficiency for the flat perforated plate were in agreement with the design curve provided by ASME code. With this result, a plate with spherical curvature having perforations can be conveniently analyzed with equivalent elastic modulus and equivalent Poisson's ratio.