• Title/Summary/Keyword: effective parameter

Search Result 1,653, Processing Time 0.028 seconds

The Effect of Coagulation for Dispersion Modelling of Spilled Oil (해상유출유의 분산모델링에 대한 응집효과)

  • 설동관
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.44-52
    • /
    • 2000
  • The dispersion of surface oil is generally described as a break-up of oil slick into small oil droplets. These small droplets are subjected to turbulence and vertical circulation so that it can be entrained into subsurface. Sometimes they tend to be submerged into sea bottom permanently. The diameter of oil droplets is a critical parameter to determine their behavioral characteristics under water surface. At the same time the variations of droplet stability depends on the weathering of it. That is why the weathered oil has different mechanism from the unweathered one. The variability of physical properties of oil including viscosity and density contribute to interfere with effective separation of oil and emulsion droplets in water. Also in the presence of interactions among the droplets there are coalescing or coagulating effects on the dispersion process of droplets.

  • PDF

Experimental Study on the Flow Characteristic of a Confined Ppray (제한된 공간내 분무의 유동특성 실험)

  • 정선재;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.1011-1018
    • /
    • 1992
  • A series of experiment has been performed on the spray characteristics in a cylindrical confined space with the injection pressure taken as a parameter. By using a single-hole patternator and the Malvern particle sizer, the spray mass flux, drop size and volume concentration distributions along the radial and axial directions were obtained ; the line-of- sight data by Malvern particle sizer have been converted to the ring-of-sight data by using the tomographical transformation techniqe. The experimental results show that, due to the restriction on the ambient gas entrainment by the wall boundary, the effective spray angle is increasing. The spray drops were measured to be smaller in the confined space because of a large number of floating small drops by recirculation of the gas phase and the breakup of large drops by the wall collision. Also the details on the flow behavior of the confined spray are discussed.

Robust System Identification Algorithm Using Cross Correlation Function

  • Takeyasu, Kazuhiro;Amemiya, Takashi;Goto, Hiroyuki;Masuda, Shiro
    • Industrial Engineering and Management Systems
    • /
    • v.1 no.1
    • /
    • pp.79-86
    • /
    • 2002
  • This paper proposes a new algorithm for estimating ARMA model parameters. In estimating ARMA model parameters, several methods such as generalized least square method, instrumental variable method have been developed. Among these methods, the utilization of a bootstrap type algorithm is known as one of the effective approach for the estimation, but there are cases that it does not converge. Hence, in this paper, making use of a cross correlation function and utilizing the relation of structural a priori knowledge, a new bootstrap algorithm is developed. By introducing theoretical relations, it became possible to remove terms, which is liable to include much noise. Therefore, this leads to robust parameter estimation. It is shown by numerical examples that using this algorithm, all simulation cases converge while only half cases succeeded with the previous one. As for the calculation time, judging from the fact that we got converged solutions, our proposed method is said to be superior as a whole.

Derivation Algorithm of State-Space Equation for Production Systems Based on Max-Plus Algebra

  • Goto, Hiroyuki;Masuda, Shiro
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • This paper proposes a new algorithm for determining an optimal control input for production systems. In many production systems, completion time should be planned within the due dates by taking into account precedence constraints and processing times. To solve this problem, the max-plus algebra is an effective approach. The max-plus algebra is an algebraic system in which the max operation is addition and the plus operation is multiplication, and similar operation rules to conventional algebra are followed. Utilizing the max-plus algebra, constraints of the system are expressed in an analogous way to the state-space description in modern control theory. Nevertheless, the formulation of a system is currently performed manually, which is very inefficient when applied to practical systems. Hence, in this paper, we propose a new algorithm for deriving a state-space description and determining an optimal control input with several constraint matrices and parameter vectors. Furthermore, the effectiveness of this proposed algorithm is verified through execution examples.

The effect of inlet air temperature for the cooling of the military electronic chip on the thermal conductive board (공기온도가 열전도성 기판 위에 탑재된 군용 전자칩 냉각에 미치는 영향)

  • 이진호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.195-206
    • /
    • 2002
  • The conjugate heat transfer from the simulated module in a horizontal channel with the variation of inlet air temperature is experimentally investigated. The aim of this study is to estimate temperature difference between a module and inlet air. This study is performed with the variation of parameters that are inlet air temperature(Ti=25~$55^{\circ}C), thermal resistance( $R_c$=0.05, 4.11, 158 K/W), inlet air velocity(Vi=0.1~1.5m/s), and input power(Q=3, 7 W). The results show that the effect of inlet air temperature is little, at the case of using conductive board. And input power was most effective parameter on the temperature difference between module and Inlet air.

Emergency Monitoring System Based on a Newly-Developed Fall Detection Algorithm

  • Yi, Yun Jae;Yu, Yun Seop
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.3
    • /
    • pp.199-206
    • /
    • 2013
  • An emergency monitoring system for the elderly, which uses acceleration data measured with an accelerometer, angular velocity data measured with a gyroscope, and heart rate measured with an electrocardiogram, is proposed. The proposed fall detection algorithm uses multiple parameter combinations in which all parameters, calculated using tri-axial accelerations and bi-axial angular velocities, are above a certain threshold within a time period. Further, we propose an emergency detection algorithm that monitors the movements of the fallen elderly person, after a fall is detected. The results show that the proposed algorithms can distinguish various types of falls from activities of daily living with 100% sensitivity and 98.75% specificity. In addition, when falls are detected, the emergency detection rate is 100%. This suggests that the presented fall and emergency detection method provides an effective automatic fall detection and emergency alarm system. The proposed algorithms are simple enough to be implemented into an embedded system such as 8051-based microcontroller with 128 kbyte ROM.

Analysis of Invesion Layer Quantization Effects in NMOSFETs (NMOSFET의 반전층 양자 효과에 관한 연구)

  • Park, Ji-Seon;Sin, Hyeong-Sun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.9
    • /
    • pp.397-407
    • /
    • 2002
  • A new simulator which predicts the quantum effect in NMOSFET structure is developed. Using the self-consistent method by numerical method, this simulator accurately predicts the carrier distribution due to improved calculation precision of potential in the inversion layer. However, previous simulator uses analytical potential distribution or analytic function based fitting parameter Using the developed simulator, threshold voltage increment and gate capacitance reduction due to the quantum effect are analyzed in NMOS. Especially, as oxide thickness and channel doping dependence of quantum effect is analyzed, and the property analysis for the next generation device is carried out.

Improved Direct Method for Calculating the Closest Voltage Collapse Point and Voltage Stability Enhancement by Generation Redispatch (최단 전압붕괴점 계산을 위한 개선된 직접법과 재급전에 의한 전압안정도 향상)

  • Nam, Hae-Kon;Song, Chung-Gi;Kim, Dong-Jun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.958-964
    • /
    • 1999
  • The distance in load parameter space to the closest saddle node bifurcation (CSNB) point provides the worst case power margin to voltage instability and the left eigenvector at CSNB identifies the most effective direction to steer the system to maximize voltage stability under contingency. This paper presents an improved direct method for computing CSNB: the order of nonlinear systems equations is reduced to about twice of the size of load flow equations in contrast to about three-times in Dobson's direct method; the initial guess for the direct method is computed efficiently and robustly by combined use of continuation power flow, a pair of multiple load flow solution with Lagrange interpolation. It is also shown that voltage stability may be enhanced significantly with shift of generations in the direction of the left eigenvector at CSNB.

  • PDF

Electron Energy Distribution Function in $CF_4$ Gas used by MCS-BE Algorithm ($CF_4$ 기체의 MCS-BEq 알고리즘에 의한 전자에너지 분포함수)

  • Park, Jae-Sae;Kim, Sang-Nam;Kim, Il-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.102-105
    • /
    • 2002
  • In this paper, the electron transport characteristics in $CF_4$ has been analysed over the E/N range 1${\sim}$300 [Td] by a two-term approximation Boltzmann equation method and by a Monte Carlo simulation. The motion has been calculated to give swarm parameters for the electron drift velocity, longitudinal diffusion coefficient, the ratio of the diffusion coefficient to the mobility, electron ionization and attachment coefficients, effective ionization coefficient, mean energy, collision frequency and the electron energy distribution function. The swarm parameter from the swarm study are expected to serve as a critical test of current theories of low energy electron scattering by atoms and molecules, in particular, as well as crucial information for quantitative simulations of weakly ionized plasmas.

  • PDF

A Study on Electronic Interaction in Dimetallic Complexes with Conjugated Chain (공액사슬로 연결된 이핵금속착체의 전자적 상호작용에 관한 연구)

  • Chung, Min-Chul;Munetaka Akita
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.652-660
    • /
    • 2004
  • The cis-hex-3-ene-1,5-diynyl-bridged diiron compound 3, [(η$^{5}$ - $C_{5}$ M $e_{5}$ ) Fe(dppe)]$_2$($\mu$-C≡C-CH=CH-C≡C), have been prepared and characterized by cyclic voltammetry(CV), and electronic spectroscopy (UV-VIS and near-IR, NMR). From the results, compound 3 show two well resolved, single-electron, reversible oxidation waves by CV, and comproportionation constant(Kc) calculated from the CV data for compound 3. The Mixed-valence (MV) radical cation 3$^{+}$ show strong absorptions in the near IR, 1586 nm, and this band is more readily assigned as MV $\pi$-$\pi$ band of delocalized complex (Robin-Day Mixed-valence Class III), and the $H_{ab}$ , effective coupling parameter are most consistent with electronic delocalization.