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Abstract. This paper proposes a new algorithm for determining an optimal control input for production systems. In 
many production systems, completion time should be planned within the due dates by taking into account 
precedence constraints and processing times. To solve this problem, the max-plus algebra is an effective approach. 
The max-plus algebra is an algebraic system in which the max operation is addition and the plus operation is 
multiplication, and similar operation rules to conventional algebra are followed. Utilizing the max-plus algebra, 
constraints of the system are expressed in an analogous way to the state-space description in modern control theory. 
Nevertheless, the formulation of a system is currently performed manually, which is very inefficient when applied 
to practical systems. Hence, in this paper, we propose a new algorithm for deriving a state-space description and 
determining an optimal control input with several constraint matrices and parameter vectors. Furthermore, the 
effectiveness of this proposed algorithm is verified through execution examples. 
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1. INTRODUCTION 

Precedence constraints or multi-stage processes are 
frequently imposed in many production systems such as 
assembly lines or batch-processing lines. They imply that 
a certain process cannot start until any former processes 
complete and all the manufactured parts for input are 
ready. In addition, completion times should be planned 
within the due dates. Under such conditions, the max-
plus algebra is an effective approach for solving 
problems concerning the processing times and due dates 
(Boimond et al., 1996; Goto et al., 2002; Masuda et al., 
2003). 

The max-plus algebra is an algebraic system 
in which the max operation is addition and the 
plus operation is multiplication. Properties such as 
commutativity and the distributive law hold, both of 
which are familiar in conventional algebra. Any system 
taking into account both precedence constraints and 
processing times can be represented simply by utilizing 
the max-plus algebra. The system representation is called 

a MPL (max-plus-linear) system, which is similar to the 
state-space description in modern control theory 
(Baccelli et al., 1992; Cohen et al., 1989). An MPL 
system has an independent variable called the event 
counter, which is analogous to the use of “time” in a 
traditional representation. 

An MPL system can describe the behavior of a TEG 
(Timed Event Graphs) (Cohen et al., 1989). The TEG is a 
subclass of Petri net in which all places have a single 
transition upstream and a single one downstream. 
Although the application scope for the TEG is limited to 
discrete event systems with only synchronization and no 
concurrency, they can be used to describe the behavior of 
many practical systems. 

In the process industry, many applications utilizing 
the max-plus algebra have been studied and reported on 
recently. For instance, internal model control (IMC) is 
applied to the controller design method in Boimond et al. 
(1996), and a diagnosis method of batch processes based 
on IMC is proposed in Schullerus et al. (2001). In 
addition, model predictive control (MPC) is applied to a 
scheduling algorithm of assembly lines in Schutter et al. 
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(2001), and Goto et al. (2002) has extended this to cases 
in which the processing times differ by each event. As 
these few examples indicate, much attention has been 
paid to the application field of the max-plus algebra. 

However, the related studies are still under 
investigation, and require improvement for general use in 
practical systems. For example, in production systems, 
precedence constraints are frequently changed and the 
state-space equations should be restructured accordingly. 
Currently, the equations have to be derived manually, 
which is a very inefficient process. Therefore, we 
propose a new algorithm for deriving a state-space 
equation and determining an optimal control input with 
only a few manual procedures. In this paper, we deal 
with deterministic flow-line style production systems 
with predetermined performance parameters. 

Generally, a controller design utilizing MPC is 
constructed from the following steps: 

 
·Model a control objective 
·Examine the constraints and derive a state-space 

equation 
·Derive an output prediction equation and determine a 

control law 
 
The procedures described above would be 

laborsome under certain conditions. For instance, the 
derivation process of the state-space equations in step 2 is 
very time consuming for complicated systems. Even 
when an analogous system is to be analyzed, the design 
process must be started from step 1. When a robust
controller should be designed, the prediction number 
must be large, and the prediction equation becomes 
complicated. 

 

Hence, we propose a new algorithm to determine a 
system representation and an optimal control input. 
Utilizing the new algorithm, the state-space equation can 
be derived from only three constraint matrices and two 
parameter vectors. Accordingly, complicated systems can 
be analyzed easily. 

This paper is organized as follows: 
Section 2 gives the mathematical preliminaries. 

Section 3 shows a MPC framework for the MPL system 
using an example of a production system. Section 4 
introduces an algorithm for deriving a state-space 
equation. Section 5 presents simulation results, and 
finally, section 6 gives concluding remarks.  

2.  MATHEMATICAL PRELIMINARIES 

The max-plus algebra is an algebraic structure 
defined on , where  represents the 
real field. The basic two operators  and ⊗ , which 
stand for addition and multiplication respectively, are 

defined in the following way: 

{ }−∞∪= RRε R
⊕

{ }yxyx ,max=⊕ ,   yxyx +=⊗ (1)

Let ε  be defined as −∞ , which is a unit element 
of the addition ⊕ , and let  be defined as 0, which is a 
unit element of the multiplication . These operators 
have similar operation rules like the conventional 

e
⊗

( )×+,  
algebra; ⊗  operator has a higher priority than ⊕  
operator, and they hold the distributive law: 

zyzxzyx ⊗⊕⊗=⊗⊕ )(  (2)

For simplicity, the ⊗  operator is often suppressed. 
Moreover, the following two operators are also defined: 

( )yxyx ,min=∧ ,   yxyx +−=\ (3)

Operations to multiple numbers are defined in the 
followings. When nm ≤ , then 

 

( )nmmnmmkmk
aaaaaaa ,,,max 11 ++

=
=⊕⊕⊕=⊕

n

n

 
(4)

nmmnmmkmk
aaaaaaa +++=⊗⊗⊗= ++

=
⊗ 11 (5)

 

( )nmmnmmk

n

mk
aaaaaaa ,,,min 11 ++=

=∧∧∧=∧
 

(6)

Furthermore, operation rules on matrices are defined 
by applying the same law described above. For instance, 
in , nm×∈ εRBA,

 

[ ] ( )ijijijijij ][,][max][][ BABABA =⊕=⊕  (7)

[ ] ( )ijijijijij ][,][min][][ BABABA =∧=∧  (8)

 
where [ ]ij*  expresses (i,j)-th element of the matrix. 
Additionally, [ ] :* i  denotes i-th row of the matrix. 

 
If , pllm ×× ∈∈ εε RBRA ,
 

[ ] ( ) ( kjiklkkjik

l

kij ][][max][][
,,11

BABABA +=⊗=⊗
==

⊕ )

)

(9)

[ ] ( ) ( kjiklkkjik

l

kij ][][min][\][
,,11

BABABA +−==Θ
==

∧   (10)

 
Unit elements of addition and multiplication are 

stated as follows: 
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If , implies  for all 

. 

n
εRba ∈, ba ≤ ii ][][ ba ≤

)1( ni ≤≤

3.  DETERMINATION OF OPTIMAL CONTROL 
INPUT 

This section introduces a MPL system using the 
model of a production system and considers the optimal 
control law for the system. Firstly, we briefly review the 
design method for the model predictive control based on 
MPL systems described in Goto et al. (2002) in order to 
show the effectiveness of the modeling of MPL systems. 

3.1 State-Space Description Using Max-Plus 
Algebra 

Using the max-plus algebra, constraints on 
production systems can be expressed in a form that is 
similar to the state-space representation in modern 
control theory. 

Figure 1 shows a two-input, one-output production 
system. Machine 1 receives parts from input lane 1, 
processes them, and sends them to machine 3. Machine 2 
receives parts from input lane 2, processes them, and 
sends them to machine 3. Machine 3 receives two parts 
from machines 1 and 2, processes them, and sends the 
resulting part to the next lane. Suppose each machine can 
process just a single item at a time, and the inventory 
buffer sizes are infinite. 

Let variables relevant to the production system be 
defined as follows: 
 
1) )(1 ku )(2 ku : 
 Input times for the k-th part on machines 1 and 2 
2) )(1 kd , , : )(2 kd )(3 kd
 Processing times for the k-th part on machines 1, 2 

and 3 
3) )(ky : 
 Completion time of processing for the k-th part on 

machine 3 
4) )(1 kx , , : )(2 kx )(3 kx
 Starting times of processing for the k-th part on 

machines 1, 2 and 3 
 

Suppose the following precedence constraints are 
imposed on the production system. 
 
·Machines 1 and 2 cannot start processing until any 

previous parts have completed processing and the next 

parts have been inputted. 
mnε : All elements are ε  in  nm

mn
×∈ εRε

me  : Only diagonal elements are  and all off-
diagonal elements are

e
ε  in  mm

m
×∈ εRe

·Machine 3 cannot start processing until any previous 
parts have completed processing and the next parts are 
received from machines 1 and 2. 

·Each machine starts processing as soon as all 
necessary parts are available. 

 

machine
1

machine
3machine

2

parts flow

lane 1

lane 2
 

Figure 1.  Two-input, one-output production system 

 
In terms of the starting times for the processing, 

they are formulated as 
 

)}1(),()(max{)1( 1111 ++=+ kukdkxkx  (11)
)}1(),()(max{)1( 2222 ++=+ kukdkxkx  (12)

)}1()1(
),1()1(),()({max)1(

22

11333

+++
++++=+

kdkx
kdkxkdkxkx

 
(13)

for , and set  for 
the initial conditions. On the other hand, the completion 
time is formulated in the following way: 

1≥k ε=== )0()0()0( 321 xxx

)()()( 33 kdkxky +=  (14)

Since Eqs. (11) ~ (14) are expressed only by max 
and + operators, they are replaced by  and ⊕ ⊗  
respectively. By substituting Eqs. (11)) ~ (12) into (13), 
they are reduced to the following linear representations. 

 
)1()()1( +⊕=+ kkk uBxAx  (15)

)()( kk xCy =  (16)
where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
=

)()1()()1()(
)(

)(

32211

2

1

kdkdkdkdkd
kd

kd
εε
εε

A (17)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
=

)1()1( 21 kdkd
e

e
ε

ε
B  (18)

])([ 3 kdεε=C  (19)
Tkxkxkxk ])()()([)( 321x =  (20)

Tkyk )]([)( =y  (21)
Tkukuk ])()([)( 21u =  (22)
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Thus, the precedence constraints on the production 
system depicted in Figure 1 can be expressed as linear 
equations in the max-plus algebra, which is similar to the 
state-space equations in modern control theory. Generally, 
systems whose constraints are represented by Eqs. (15)~ 
(16), are called max-plus-linear (MPL) systems. 

3.2 MPL System and Output Prediction Equation 

In Eqs. (17)) ~ (19), A, B and C  include processing 
times (system parameters) in their elements, and they 
depend on the event counter . Thus, the matrices are 
also dependent upon the event counter, and we denote 
them as 

k

kA , kB  and Ck, respectively. Using these 
notations, the generalized linear state-space description in 
the max-plus algebra is expressed in the following way: 

 
)1()()1( +⊕=+ kkk kk uBxAx  (23)

)()( kk k xCy =  (24)
where 

nk εRx ∈)( , ,  pk εRu ∈)( qk εRy ∈)(  
nn

k
×∈ εRA , pn

k
×∈ εRB , nq

k
×∈ εRC   

 
)(kx ,  and  are called state variables, input 

variables, and output variables, respectively. ,  and 
 are the number of state variables, the number of 

inputs, and the number of outputs, respectively. 

)(ku )(ky
n p

q

By utilizing Eq. (23) iteratively, the following 
equations are obtained. 
 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

+⊕
⊕+⊕

=+

+⊕+⊕
=+

+⊕=+

−+

−+

−+

++

+

)(
)1(

)()(

)2()1(
)()2(

)1()()1(

1

1

1

11

1

Nk
k

kNk

kk
kk

kkk

Nk

kNk

kNk

kkk

kk

kk

uB
uBA

xAAx

uBuBA
xAAx

uBxAx

(25)

 
where  represents the prediction step number. 
Multiplying both sides of Eq. (25) by 

N
Nkk ++ CC ,,1 , 

and utilizing Eq. (24), we obtain the equation below. 
 

)1()()1( +⊕=+ kkk kk U∆xΓY  (26)

where 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

=+

)(

)2(
)1(

)1(

Nk

k
k

k

y

y
y

Y ,  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

=+

)(

)2(
)1(

)1(

Nk

k
k

k

u

u
u

U (27)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−++

++

+

kNkNk

kkk

kk

k

AAC

AAC
AC

Γ

1

12

1

 (28)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−+++−++

++

+

111

12

1

NkNkkkNkNk

qp

kkk

qpkk

k

BCBAAC
ε

BAC
εBC

∆ (29)

 
Eq. (26) represents an output prediction equation, and it 
can be utilized to determine an optimal control input to 
the system. 

3.3  Optimal Control Input 

This subsection gives an optimal control law for 
MPL systems by using the output prediction equation. 

Suppose the due dates are given by εR∈+ )( jkri  
(1≤i≤q, 1≤j≤N), which are also called reference 
signals. After specifying the reference signals, an optimal 
control input to the system is determined by solving 

 
)1()()1( +⊕=+ kkk kk U∆xΓR  (30)

for , where )1( +kU

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

=+

)(

)2(
)1(

)1(

Nk

k
k

k

r

r
r

R ,  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

=+

)(

)(
)(

)( 2

1

ikr

ikr
ikr

ik

q

r (31)

 
However, the solution of Eq. (30) cannot be obtained directly 
unlike in conventional algebra. Consequently, in 
this paper, it is solved by utilizing the greatest 
subsolution method described in Cohen et al. (1989)

),( ×+

 after 
transforming Eq. (30). 

Firstly, let Eq. (30) be transformed into 
 

)()1()1( kkk kk xΓRU∆ ⊕+=+ , (32)
 

which is justified by Cohen et al. (1989). Eq. (32) has the 
form of a linear equation in the max-plus algebra, which 
implies that getting the desired input using Eq. (30) 
reduces to solving the linear equation. 

If the greatest subsolution mnnm v εεε RRzRM ∈∈∈ × ,,
z of a linear equation 

, 

vz =M     (33)

is given by 

vMz Θ= T  (34)
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(Cohen et el., 1989). Therefore, the solution of Eq. (32) 
which gives the optimal control input, is expressed as 
follows: 

{ })()1()1( kkk kk xΓR∆U T ⊕+Θ=+  (35)

The following properties hold for the solution given 
in Eq. (35); when the processing can be finished 
precisely at the desired time, the solution represents the 
corresponding input time, and when it is not possible for 
the processing to complete on time, it gives the latest 
time at which the processing can be completed within the 
due date. Furthermore, if delayed completion is 
inevitable, the time that is given is the earliest time with a 
minimum delay. 

The inputs to the system are determined by utilizing 
the Receding Horizon method, which gives only the 

-th input whereas the inputs for  
are obtained in Eq. (35). Specifically, they are calculated 
in the following way: 

)1( +k ),,1( Nkk ++

)1(][)1( +=+ kk ppp Uεεeu  (36)

The inputs after the )1( +k -th step are determined 
by recalculating Eq. (36) as the event counter increases. 
Thus, a feedback control against changes of the internal 
state can be realized.  

4.  INTERNAL REPRESENTATIONS 

In the previous section, derivation processes of the 
state-space equation and the optimal control input were 
introduced. However, since they are performed manually 
in current research, they should be automated for 
practical use. Therefore, this section proposes a new 
algorithm for deriving the state-space equation and for 
determining an optimal control input by utilizing the 
max-plus algebra. 

4.1 gives constraint matrices which specify the 
constraints of the production systems. 4.2 introduces an 
algorithm for deriving the state-space equation. 4.3 
proposes an internal representation of the system 
matrices, and 0 derives an internal representation of the 
optimal control input. 

4.1  Constraint Matrices 

Precedence constraints of the system are specified 
by constraint matrices whose elements are logical 
numbers. 

Let  denote the logical field. There are three 
constraint matrices which are defined as follows: 

L

 
pnPU ×∈ L : specifies the positions of input 

[ ]
⎩
⎨
⎧

=ijPU
1: if machine  is attached 

to the -th input 
i

j
0: otherwise 

(37)

nnPX ×∈ L : specifies the precedence constraints 

[ ]
⎩
⎨
⎧

=ijPX  
1: if machine  receives 

processed parts from machine  
i

j
0: otherwise 

(38)

nqPY ×∈ L : specifies the positions of output 

[ ]
⎩
⎨
⎧

=ijPY  
1: if machine  is attached 

to the -th output 
j

i
0: otherwise 

(39)

 
Let us demonstrate the contents of the constraint 

matrices for the system depicted in Figure 1. Firstly, the 
input constraints are to be considered. The inputs 1 and 2 
are connected to machines 1 and 2 respectively, which 
results in 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00
10
01

PU  (40)

 
Next, we consider the precedence constraints. In all 

machines of the system, only machine 3 has the 
constraint of machines 1 and 2. Therefore,  is 
represented as 

PX

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

011
000
000

PX  (41)

 
As for the output constraint, output 1 is connected to 

machine 3. Hence,  is expressed as  PY

[ ]100=PY  (42)

4.2  Derivation of State-Space Equation 

This subsection derives the state-space representation 
from the constraint matrices. Consider the precedence 
constraints for a general system in an analogous way to 
the system shown in Figure 1. As for machine i , 
processing for the k+1-th part starts just after the 
following conditions are wholly satisfied: 

 
·The processing for the k-th part is completed in the 

corresponding machine; the finishing time is given by 
. )()( kxkd ii ⊗

·If the machine receives parts from an upstream 
machine j, the k+1-th part is inputted from machine j; 
the criterion is active when , and the input 
time is given by . 

[ ] 1=ijPX
)1()1( +⊗+ kxkd jj
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·If the machine is attached to the j-th input, the k+1-th 
part is inputted by the j-th input; the criterion is active 
when , and the input time is given by 

. 
[ ] 1=ijPU
)1( +ku j

Furthermore, the following condition holds for the output 
time. 
·If the i-th output is attached to machine , the 

completion time for the k -th part is given by 
; the criterion is active when 

j

)()( kxkd jj ⊗ [ ] 1=ijPY . 
These are summarized in the following way: 

 
)1()1()()1( )0()0()0( +⊕+⊕=+ kkkk kkk uBxFxAx

 
(43)

 
)()( kk k xCy =  (44)

where 

[ ]
⎩
⎨
⎧

=
ijk

)0(A  )(kdi : if  ji =
ε : otherwise (45)

[ ]
⎩
⎨
⎧

=
ijk

)0(F  )1( +kd j : if  [ ] 1=ijPX
ε : otherwise (46)

[ ]
⎩
⎨
⎧

=
ijk

)0(B  e : if  [ ] 1=ijPU
ε : otherwise (47)

k ij
=

⎧⎡ ⎤ ⎨⎣ ⎦ ⎩
C  )(kdi : if [ ] 1=ijPY  

ε : otherwise (48)

 
Next, we transform Eq. (43) into the form of Eq. (15) 

by eliminating from the right hand side. In Eq. 
(43), when all elements of the -th row in 

)1( +kx
i )0(

kF  are ε , 
the variable  is said to be ‘eliminated’, and is 
said to be ‘un-eliminated’ otherwise. The transformation 
is performed by repeating the substitution of eliminated 
variables into un-eliminated variables. 

)1( +kxi

Let 
1ω be eliminated 

variables, and let
1ψ be 

un-eliminated variables, where 

)1(),1(),1(
2

+++ kxkxkx
)1(),1(),1(

2
+++ kxkxkx

hψψ

gωω

 

}1,{
}1,{
hj

gi

j

i

≤≤∈=
≤≤∈=

Zψ
Zω

ψ
ω

,  
},2,1{

,
n=

=∪=∩
Z

Zψωψω φ
 (49)

 
Taking Eq. (43) into account, these variables are 

expressed as: 
 

( ) ( )

: :
( 1) ( ) ( 1)

i
i i

w w

k kx k k kω ω ω
+ = ⊕ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦A x B u , 

)1( gi ≤≤
(50)

( ) ( )

: :

( )

:

( 1) ( ) ( 1)

( 1)

j j j

j

w w
k k

w
k

x k k k

k

ψ ψ ψ

ψ

⎡ ⎤ ⎡ ⎤+ = ⊕ +⎣ ⎦ ⎣ ⎦

⎡ ⎤⊕ +⎣ ⎦

A x F x

B u
, 

                                    
(1 )j h≤ ≤ , 

(51)

Table 1. Transformation of the state variables 

loop { 
  Divide the state variables: { 
    : eliminated )1()1( gikx

i
≤≤+ω

    )1()1( hjkx
j

≤≤+ψ : un-eliminated 

  } 
  if ( 0=h ) exit loop 
  loop for  { )1( hjj ≤≤ψ
    loop for  { )1( gii ≤≤ω
      if ( )1( +kx

jψ  is un-eliminated for ){ )1( +kx
iω

        substitute  for  )1( +kx
iω )1( +kx

jψ

      } 
    } 
  } 
} 

 
where  holds a non-negative integer number and is 
incremented at every substitution. Substituting Eq. (50) 
for Eq. (51), the following equation is obtained. 

w

 

{ }

{ }

( )

:

( ) ( )

1,

( )

:

( )

:

( )

1,

( ) ( ) ( )

: :

( 1)

( )

( 1) ( 1)

( 1)

( )

( 1) ( 1)

( ) (

j

j

ij j i

i

j

j

ij

i

j i i i

w
k

n
w w

k l kl
l
l

w
k

w
k

n
w

k ll
l
l

w w w
k k k

x k

k

x k x k

k

k

x k x k

k k

ψ

ψ

ωψ ψ ω

ω

ψ

ψ

ωψ

ω

ψ ω ω ω

ε

=
≠

=
≠

+

⎡ ⎤=⎣ ⎦

⎡ ⎤ ⎡ ⎤⊕ + ⊕ +⎣ ⎦ ⎣ ⎦

⎡ ⎤⊕ +⎣ ⎦

⎡ ⎤=⎣ ⎦

⎡ ⎤⊕ + ⊕ +⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⊕ ⊕ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⊕

⊕

A x

F F

B u

A x

F

F A x B u{ }
( )

:

( 1)
:

( 1) ( 1)
::

1)

( 1)

( )

( 1) ( 1)

j

j

jj

w
k

w
k

w w
k k

k

k

k k

ψ

ψ

ψψ

+

+ +

⎡ ⎤⊕ +⎣ ⎦

⎡ ⎤=⎣ ⎦
⎡ ⎤ ⎡ ⎤⊕ + ⊕ +⎣ ⎦ ⎣ ⎦

B u

A x

F x B u
 

(52)

where 
( 1) ( ) ( ) ( )

: :j j j i

w w w w
k k k k :iψ ψ ψ ω

+ = ⊕
ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦A A F A  (53)

( )
( 1)

( )

( )
j

j

w
k iw l

k l
i

l

l
ψ

ψ

ω

ε ω
+

⎧⎡ ⎤ ≠⎪⎣ ⎦⎡ ⎤ = ⎨⎣ ⎦
=⎪⎩

F
F , )1( nl ≤≤ (54)

( 1) ( ) ( ) ( )

: : :j j j i

w w w w
k k k k

iψ ψ ψ ω

+ = ⊕
ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦B B F B  (55)

 
On the other hand, since is invariant 
through this substitution, 

)()1( ji ikx ψ≠+
:

)( ][ i
w

kA , :
)( ][ i

w
kF , and 
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:
)( ][ i

w
kB   are also invariant. Hence, define )( ji ψ≠

 

:
)(

:
)1( ][][ i

w
ki

w
k AA =+ , :

)(
:

)1( ][][ i
w

ki
w

k FF =+ , 

:
)(

:
)1( ][][ i

w
ki

w
k BB =+  for all  ),1( jini ψ≠≤≤

(56)

 
Consequently, 

ijk ωψ  turns into w ][ )(F ε  through 
this substitution. In other words, this operation is 
effective only when εωψ ≠

ijk . Let w ][ )(F )1( +kx
j

 
be referred to as ‘eliminated for 

iω ’ when 
ψ

)1( +kx
εωψ =

ijk , and ‘un-eliminated for 
iω ’ 

otherwise. The transformation from Eq. (43) into Eq. (23) 
is performed by the procedure shown in Table 1. 

w ][ )(F )1( +kx

As an example, let us transform the state-space 
equation of the system shown in Figure 1. In accordance 
with Eqs. (45)) ~ (48), the system whose constraint 
matrices are given by Eqs. (40)) ~ (42) is initially 
represented by the following system matrices: 

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

)(
)(

)(

3

2

1
)0(

kd
kd

kd

k

εε
εε
εε

A  

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
=

ε
εεε
εεε

)1()1( 21

)0(

kdkd
kF  

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

εε
ε

ε
e

e

k
)0(B  

])([][ 3 kdk εε=C  

 
Checking each row of ][ )0(

kF  reveals that  and 
 are the eliminated variables, and  is 

the un-eliminated variable. Hence,  and 
. Utilizing Eqs. (53)) ~ (55), substituting 

 for produces the following results: 

)1(1 +kx
)1(2 +kx )1(3 +kx

)2(}2,1{ == gω
)1(}3{ == hψ

)1(1 +kx )1(3 +kx
 

(1) (0) (0) (0)

3: 3: 31 1:

3

1 1

1 1 3

[ ( )]
( 1)[ ( ) ]

[ ( ) ( 1) ( )]

k k k k

d k
d k d k

d k d k d k

ε ε
ε ε

ε      

   

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⊕⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
  =

⊕ +
= +

A A F A

 

(1)
23:

[ ( 1)k d k ]ε ε⎡ ⎤ = +⎣ ⎦F  

(1) (0) (0) (0)

3: 3: 31 1

1

1

[ ] ( 1)[ ]
[ ( 1) ]

k k k k

d k e
d k
ε ε ε

ε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⊕⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
    = ⊕ +
    = +

B B F B
 

Subsequently, substituting  for  results 
in  

)1(2 +kx )1(3 +kx

 
(2) (1) (1) (1)

3: 3: 32 2:

1 1 3

2 2

1 1 2 2 3

[ ( ) ( 1) ( )]

( 1)[ ( ) ]

[ ( ) ( 1) ( ) ( 1) ( )]

k k k k

d k d k d k

d k d k

d k d k d k d k d k

ε

ε ε

= ⊕

 = +

⊕ +

 = + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
   

   

A A F A

 

(2)

3:
[ ]k ε ε ε=⎡ ⎤⎣ ⎦F  

(2 ) (1) (1) (1)
3: 3: 32 2

1 2

1 2

[ ( 1) ] ( 1)[ ]
[ ( 1) ( 1)]

k k k k

d k d k e
d k d k

ε ε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦= ⊕

     = + ⊕ +
     = + +

B B F B
 

 
Consequently,  turns into an eliminated 
variable, and hence all the state variables are eliminated. 
Meanwhile, since  and  are invariant 
through these substitutions, 

)1(3 +kx

)1(1 +kx )1(2 +kx
:

)( ][ i
w

kA , :
)( ][ i

w
kF , and 

:
)( ][ i

w
kB   are also invariant. Utilizing 

Eq. (56), they are represented in the following way: 
)3,20( ≠≤≤ iw

 

])([][

])([][

2:2
)(

1:1
)(

εε

εε

kd

kd
w

k

w
k

=

=

A

A
,  )20( ≤≤ w

][][ :
)( εεε=i

w
kF , )20,2,1( ≤≤= wi

][][

][][

:2
)(

:1
)(

e

e
w

k

w
k

ε

ε

=

=

B

B
,  )20( ≤≤ w

 
It follows that ][ )2(

kA  and ][ )2(
kB  coincide with A  

in Eq. (17) and  in Eq. (18), respectively. Hence, the 
state-space equation in the form of Eq. (43) is 
transformed into Eq. (23). 

B

Considering Eqs. (45)) ~ (48) and Eqs. (53)) ~ (56), 
each element of the system matrices is expressed as a 
polynomial of the system parameters. Therefore, the 
internal representation of the system matrices should 
be designed in order to store the degrees of the system 
parameters, which is defined in the next subsection. 

4.3  Internal Representation of System Matrices 

In this subsection, the internal representation of the 
system matrices is considered. 

As multiplication or exponentials of the system 
parameters )10,1()( ≤≤≤≤+ jnijkd i  are incorporated 
into )(w

kA , )(w
kF , )(w

kB and kC  in their elements, the 
internal representation of the system matrices should be 
designed such that exponentials of the variables are 
effectively expressed. 
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Therefore, the entity shown in Figure 2 is proposed. 
It is referred to as a ‘plane’ hereafter. In Figure 2, 

 )  stores the degree of the 
corresponding system parameter , where 

Z∈ijS 0,1( Njni ≤≤≤≤
)( jkd i +

Z represents the non-negative integer field. Recall that 
 is a prediction step number, and n  denotes the 

number of system parameters. Using this plane, a 
variable space defined in 

N

 

ijjkdi

n

i

N

j

S)(
10

+⊗⊗
==

 (57)

 
can be expressed, and let this field be denoted as . An 
example of  is illustrated in Figure 3.  

S
2

21 )1()( +⊗ kdkd
Multiplication of the system parameters is expressed 

using a single plane, and parameters combined with ⊕ 
are expressed by a collection of multiple planes. If the 
number of planes is zero, this represents ε . If the 
number of planes is one and all the elements of the plane 
are zero, this represents . e

Concerning the properties of the max-plus algebra, 
basic operations for the system parameters can be 
performed by utilizing the plane. The operation rules are 
explained in Table 2. 

Utilizing the rules shown in Table 2, each element 
of the system matrices is expressed by a collection of 
planes. In order to confirm this fact, the following lemma 
is considered. 

 

Lemma 1. 
When  and  are expressed by a collection of 

planes,  is also expressed by a collection of planes. 
v w

vw
 

 

Figure 2.  Plane for expressing system parameters ( ) S

 
 

 

Figure 3. Representation of  2
21 )1()( +⊗ kdkd

Table 2. Operation rules for plane 

Addition of two planes 

1 A collection of source planes is equivalent to a result. 
If the sources are equal, they are reduced to a single 
plane. 
Multiplication of two planes 2
Summations of respective elements are a result. 
Increment of  k

3 Shift  a single column to the right, and fill the first 
column with 0. 

ijS

 
Proof. 

v  and  are represented as w

i

I

i
vv

1=
⊕= ,       j

J

j
ww

1=
⊕= SwSv ∈∈ ji , (58)

Utilizing the distributive law, 
 

( ) ( ) )(
111

JILl

L

lji

J

j

I

i
⋅=⊕=⊕⊕=

===
zwvvw  (59)

Using the multiplication rule 2 in Table 2, jil  is 
expressed by a single plane. Thus,  is expressed by a 
collection of planes.  

wvz =
vw

 
Since each element of the system matrices in Eqs. 

(45)) ~ (48) is represented by a power of the system 
parameters, all the elements of the system matrices in 
Eqs. (43)) ~ (44) are expressed by a collection of planes. 
Moreover, concerning the recursive equations Eqs. 
(53)) ~ (55) and utilizing Lemma 1, it follows that all the 
elements of the system matrices in Eqs. (23)) ~ (24) can 
be expressed as a collection of the system parameters. 

 

0

1

0

0

0

0

])()1()([

{}

{}{}{}{}

])([)1(])([][

311

113:3
)1(

kdkdkd

kdkdkdk

ε

εεεε

+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⊗⊕

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⊗+⊕=A

0 1

0

0

0

0

01

0

0

0

0

0

0

0

0

11 0

1

0

0

0

0

 

])()1()()1()([

{}{}{}

])([)1(])()1()([

][

32211

22311

:3
)2(

kdkdkdkdkd

kdkdkdkdkd
k

++=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⊗⊕

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⊗+⊕+= εεε

A

0

1

0

0

0

01

0

0

0

1

0

0

10

00

0 0

1 0

00

0

1

0

0

0

1

0

0

1

00

0 0

1

0

0

0

0

1

Figure 4. Calculations of :3
)1( ][ kA  and :3

)2( ][ kA  
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Therefore, the state-space equations Eqs. 
(23)) ~ (24) are derived and the elements of the system 
matrices are expressed by a collection of planes. 

As an example, calculations of :3
)1( ][ kA  and 

:3
)2( ][ kA using planes are shown in Figure 4.  represents {}

ε , and indicates that the number of planes is zero. 

4.4 Internal representation of optimal control input 

This subsection considers an internal representation 
of the optimal control input shown in Eqs. (35)) ~ (36). 

Since kA , kB  and kC  are expressed by a 
collection of planes, 1−+ jkA , 1−+ jkB  and jk+C  

 are also represented by utilizing the 
operation rule 3) in Table 2. In addition, Eq. (9) indicates 
that when all elements of matrices 

)1( Nj ≤≤

A  and  are 
expressed by a collection of planes, all elements of 

B
AB  

are also expressed by a collection of planes. Thus, all the 
elements of kΓ  and k∆ in Eqs. (28)) ~ (29) are 
expressed by a collection of planes. 

In this way, the internal representation of the 
optimal control input in Eqs. (35)~(36) is derived. It 
follows that the inputs are expressed as functions of the 
system parameters. 

 

T

kkk

kdkd
kdkdkd
kdkdkd

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
++
++

=

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊗⎥
⎦

⎤
⎢
⎣

⎡
=

= +

)1()(
)1()1()(
)1()1()(

{}{}

{}{}

{}{}

33

322

311

1 ACΓ

0 0
0 0
0 1

1 0
0 0
0 0

0 0
0 1
0 0

1 1
0 0
0 0

0 0
1 1
0 0

0 0
0 0
1 0

1 1
0 0
0 1

0 0
1 1
0 1

0 0
0 0
1 1

 

T

kkk

kdkd
kdkd

⎥
⎦

⎤
⎢
⎣

⎡
++
++

=

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊗⎥
⎦

⎤
⎢
⎣

⎡
=

= +

)1()1(
)1()1(

{}

{}

{}{}

32

31

1BC∆

0 0
0 0
0 1

0 0
0 0
0 0

0 1
0 0
0 0

0 0
0 1
0 0

0 1
0 0
0 1

0 0
0 1
0 1

0 0
0 0
0 0

 
Figure 5.  Calculation of kΓ  and k∆  for 1=N  

An illustrative calculation of kΓ  and k∆  for 1=N  
using planes is shown in Figure 5. The correctness of this 
result is confirmed in the next section. 

In on-line calculation, the inputs are determined by 
substituting the current values of the system parameters, 
state variables, and the reference inputs. 

5.  EXECUTION EXAMPLES 

In order to confirm the effectiveness of this 
proposed method, this section presents execution 
examples. Note that the experiments are performed on a 
Hitachi Pentium-4 2.4GHz PC. 

5.1 demonstrates an internal representation of the 
production system, and 5.2 estimates the calculation 
volume for the derivation of the state-space equation. 

5.1  Results of Internal Representation 

Figure 6 shows the result of deriving a state-space 
equation for the system depicted in Figure 1. Numbers 
inside parentheses denote step numbers appended to the 
event counter k. For instance, d2(1) represents 

.  )1(2 +kd
Figure 7 shows the representations of kΓ  and k∆  

for the prediction step =1, and indicates N
 

T

k

kdkd
kdkdkd
kdkdkd

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
++
++

=
)1()(

)1()1()(
)1()1()(

33

322

311

Γ  (60)

[ ])1()1()1()1( 3231 ++++= kdkdkdkdk∆ (61)
 
Figure 8 shows the representations of k∆  for 

=3. For instance, the third element indicates N
 

)3()2()1()1(
)3()2()2()1(

)3()3()2()1(][

3331

3311

311131

++++⊕
++++⊕

++++=

kdkdkdkd
kdkdkdkd

kdkdkdkdk∆

 

(62)

5.2  Calculation Volume 

As is shown in the previous subsection, the 
representation of system matrices becomes more 
complicated in proportion to the value of the prediction 
step number N. Since  should be set to be a large 
number for designing a robust controller, this algorithm 
is effective in such situations. 

N

To confirm this, the total number of planes for kΓ  
and k∆  are examined and shown in Figure 9. The total 
number of planes is defined as a summation of the 
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number of planes in each element. In Figure 9, it seems 
that the number of planes grows quadratically as the 
prediction step  increases. In fact, the growth is 
estimated to be  for 

N
nn 22 + kΓ , and  for nn +2

k∆ , 
respectively. 

Figure 10 shows the computation times for deriving 
the internal representation of the state-space equation and 
the optimal control input. The former is the time for 
obtaining the internal representation of kA , kB and 

kC in Eqs. (23)) ~ (24), and the latter is for kΓ  and 
k∆  in Eq. (35). Each result represents the time taken 

averaged over ten executions. As for the derivation of the 
state-space equation, the calculation volume is fixed and 
hence the computation times are almost the same. On the 
other hand, the computation times for deriving the 
optimal control input grow at a greater than quadratic rate 
as the prediction step number increases. 

 
A = 
    'd1(0)'                   ''         '' 
              ''    'd2(0)'              '' 
    'd1(0)d1(1)'    'd2(0)d2(1)'    'd3(0)' 
B = 
    'e'             '' 
         ''    'e'     
    'd1(1)'    'd2(1)' 
C = 
     ''     ''    'd3(0)' 

Figure 6.  Representations of kA , kB  and kC  

 

Gamma = 
  'd1(0)d1(1)d3(1)' 'd2(0)d2(1)d3(1)'  'd3(0)d3(1)' 
Delta =  
  'd1(1)d3(1)' 'd2(1)d3(1)' 

Figure 7.  Representations of kΓ  and k∆ (for =1) N

 

Delta(1, 1) = 
    'd1(1)d3(1)' 
Delta(2, 1) = 
    'd1(1)d1(2)d3(2)(+)d1(1)d3(1)d3(2)' 
Delta(3, 1) = 
   'd1(1)d1(2)d1(3)d3(3)(+)d1(1)d1(2)d3(2)d3(3) 
     (+)d1(1)d3(1)d3(2)d3(3)' 
Delta(1, 2) = 
    'd2(1)d3(1)' 
Delta(2, 2) = 
    'd2(1)d2(2)d3(2)(+)d2(1)d3(1)d3(2)' 
Delta(3, 2) = 
   'd2(1)d2(2)d2(3)d3(3)(+)d2(1)d2(2)d3(2)d3(3) 
     (+)d2(1)d3(1)d3(2)d3(3)' 

Figure 8.  Representations of k∆ (for =3) N

Therefore, it follows that deriving an output 
prediction equation manually is impractical when  is 
large, which highlights the usefulness of this proposed 
algorithm. 

N

6.  CONCLUDING REMARKS 

This paper proposes a new algorithm for deriving a 
state-space equation and determining an optimal control 
input in MPL systems. 

Utilizing the proposed method, the derivation 
processes can be achieved by providing only constraint 
matrices and parameter vectors, while they are handled 
manually in current research. Moreover, since the system 
parameters are handled as variables in the solution of the 
optimal control input, the input can be calculated by 
substituting the internal states and the reference signals. 

Through execution examples, internal representations of 
 

 
Figure 9.  Number of planes for o)(kΓ  and x)(k∆  

 

 
 

 
 
 

 

Figure 10.  Computation times for deriving the state-space 
equation  and the optimal control input  o)( x)(
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the system constraints and the output prediction 
equations are shown, and the effectiveness of this 
proposed algorithm is confirmed by examining the 
calculation volume for a controller based on MPC. 

As this algorithm is applicable to complicated 
systems, analyses and control designs for practical 
systems using the max-plus algebra are becoming 
realistic. 
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