• Title/Summary/Keyword: effective parameter

Search Result 1,653, Processing Time 0.028 seconds

Quantitative Evaluation of Criticality According to the Major Influence of Applied with Burnup Credit on Dual-purpose Metal Cask (국내 금속겸용용기의 연소도 이득효과 적용 시 주요영향인자에 따른 정량적 핵임계 평가)

  • Dho, Ho-seog;Kim, Tae-man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.141-154
    • /
    • 2015
  • In general, conventional criticality analysis for spent fuel transport/storage systems have been performed based on the assumption of fresh fuel concerning the potential uncertainties from number density calculations of actinide nuclides and fission products in spent fuel. However, these evaluation methods cause financial losses due to an excessive criticality margin. In order to overcome this disadvantage, many studies have recently been conducted to design and commercialize a transportation and storage cask applied to the Burnup Credit (BUC). This study conducted an assessment to ensure criticality safety for reactor operating parameters, axial burn-up profiles and misload accident conditions, which are the factors that are likely to affect criticality safety when the BUC is applied to the dual-purpose cask under development at the KOrea RADioactive waste agency (KORAD). As a result, it was found that criticality resulting from specific power, changed substantially and relied on conditions of low enrichment and high burn-up. Considering the end effect in the case of high burn-up produced a positive-definite result. In particular, the increment of maximum effective multiplication factors due to misloading was 0.18467, confirming that misload is a factor that must be taken into account when applying the BUC. The results of this study may therefore be utilized as references in developing technologies to apply the BUC to domestic models and operational procedures or preventing any misload accidents during the process of spent fuel loading.

Effects of Bar Deformation Height on Bond Degradation Subject to Cyclic loading (반복하중시 철근 마디높이에 따른 부착 손상특성)

  • Lee, Jae-Yuel;Kim, Byong-Kook;Hong, Gi-Suop;Choi, Oan-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • One of the reasons for brittle failure in reinforced concrete structures subjected to severe earthquake is due to large local bond-slippage of bars resulting in fast bond degradation between reinforcing bars and concrete. This study aims to evaluate effects of bar deformation height on bond performance, specially, bond degradation under cyclic loading. Bond test specimens were constructed with machined bars with high relative rib areas. The degree of confinement by transverse bars is also another key parameters in this bond test. From test results, amounts of energy dissipation are calculated and compared for each parameter. Test results show that bond strength and stiffness drops significantly as cycles increases. The confinement and high relative rib area are effective to delay bond degradation, as the reduction of bond strength of cyclic loading compared to monotonic loading decreased for bars with large confinement and high relative rib areas. The energy dissipation also increases as the degree of confinement and relative rib area increases. However, tested bars with very high rib areas show that the bond may be damaged at relatively small slip because of high stiffness. The study will help to understand the bond degradation mechanism due to bar deformation height under cyclic loading and be useful to develop new deformed bars with high relative rib areas.

Development of a Model for Calculating Road Congestion Toll with Sensitivity Analysis (민감도 분석을 이용한 도로 혼잡통행료 산정 모형 개발)

  • Kim, Byung-Kwan;Lim, Yong-Taek;Lim, Kang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.5
    • /
    • pp.139-149
    • /
    • 2004
  • As the expansion of road capacity has become impractical in many urban areas, congestion pricing has been widely considered as an effective method to reduce urban traffic congestion in recent years. The principal reason is that the congestion pricing may lead the user equilibrium (UE) flow pattern to system optimum (SO) pattern in road network. In the context of network equilibrium, the link tolls according to the marginal cost pricing principle can user an UE flow to a SO pattern. Thus, the pricing method offers an efficient tool for moving toward system optimal traffic conditions on the network. This paper proposes a continuous network design program (CNDP) in network equilibrium condition, in order to find optimal congestion toll for maximizing net economic benefit (NEB). The model could be formulated as a bi-level program with continuous variable(congestion toll) such that the upper level problem is for maximizing the NEB in elastic demand, while the lower level is for describing route choice of road users. The bi-level CNDP is intrinsically nonlinear, non-convex, and hence it might be difficult to solve. So, we suggest a heuristic solution algorithm, which adopt derivative information of link flow with respect to design parameter, or congestion toll. Two example networks are used for test of the model proposed in the paper.

Synthesis and quantitative structure-activity relationships(QSAR) analysis of 1-(phenoxymethyl) benzotriazole derivatives as new fungicide (새로운 항균제(抗菌劑)로서 1-(phenoxymethyl)benzotriazole 유도체(誘導體)의 합성(合成)과 정량적(定量的) 구조활성관계(構造活性關係)(QSAR) 분석(分析))

  • Sung, Nack-Do;Lim, Chi-Hwan;Choi, Woo-Young;Ko, Thoug-Sung;Kwon, Ki-Sung
    • Applied Biological Chemistry
    • /
    • v.33 no.3
    • /
    • pp.231-238
    • /
    • 1990
  • The structure-antifungal activity correlations between the structure of fourteen new 1-(phenoxymethyl)benzotriazoles (I) (Y=0), 1-(thiophenoxymethyl)benzotriazoles (ll) (Y=S) and 1-(azidomethyl)benzotriazole (III) derivatives were synthesized, and their activity, fifty percent inhibition of mycelial growth($pI_{50}$), in vitro against Pyricularia oryzae, Fusarium axysporum f.sp sesami, Valsa ceratosperma and Botrytis cinerea were investigated using a generalized QSAR method. The activity of (I) was superior In those of (II) and (III). The effect of the substituents (X) on the phenoxy group (I) was rationalized by a parabolic function of electronic (${\sigma}$), steric ($B_1$) and hydrophobic parameter(${\pi}$), and hydrogen bonding (HB). Where the optimal values of substituent on the fungicidal activity againt P. oryzae and F. axysporum f.sp.sesami are $B_1=1.40A;(H)$ and ${\pi}=0.07{\sim}0.15;(H)$, and those of substituent on the fungicidal activity against V. ceratosperma and B. cinerea are ${\sigma}=0.23{\sim}0.28;\;(C1),\;{\pi}=0.70;$ (C1), respectively. The most effective compound ( I a) and ( I d) were examined in this study.

  • PDF

A Study on a Model of Rainfall Drop-Size Distribution over Daegwanryeong Mountainous Area Using PARSIVEL Observations (PARSIVEL 측정 자료를 활용한 대관령 산악지역 강수입자분포 모형 연구)

  • Park, Rae-Seol;Jang, Min;Oh, Sung Nam;Hong, Yun-Ki
    • Journal of the Korean earth science society
    • /
    • v.35 no.7
    • /
    • pp.518-528
    • /
    • 2014
  • In this study, a model of rainfall drop-size distribution was modified using PARSIVEL-retrieved rainfall drop-size distribution over Daegwanryeong mountainous area. A prototype model (Modified ${\Gamma}$ distribution model) applicable for this area was decided through the comparative analysis between results from models proposed by preceding research and PARSIVEL-retrieved data over Daegwanryeong mountainous area. In order to apply the prototype model for Daegwanryeong region, the parameters (${\alpha}$, A, B) were made via sensitivity experiments and models of the rainfall drop-size distributions for five cases of rainfall rate were proposed. Results from the proposed five models showed high correlations with PARSIVEL-retrieved data ($R^2=0.975$). In order to suggest a generalized form of rainfall drop-size distribution, interaction equations between rainfall rates and parameters (${\alpha}$, A, B) were investigated. The generalized model of the rainfall drop-size distribution was highly correlated with PARSIVEL-retrieved data ($R^2=0.953$), which means that the proposed model from this study was effective for simulating the rainfall drop-size distribution over Daegwanryeong region. However, the proposed model was optimized for rainfall drop-size distribution over Daegwanryeong region. Therefore, broad observations of other regions are necessary in order to develop the representative model of the Korean peninsula.

Derivation of Optimum GGBFS Replacement with Durability Design Parameters (내구성 설계 변수에 따른 최적 고로슬래그 미분말의 치환율 도출)

  • Jang, Seung-Yup;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.36-42
    • /
    • 2018
  • GGBFS(Ground Granulated Blast Furnace Slag)-replacement is very effective for improving resistance to chloride attack and this can induce a long service life for RC(Reinforced Concrete) structures exposed to chlorides. In the work, the design parameters such as cover depth, surface chloride content, critical chloride content, and replacement ratio of GGBFS are considered, and optimum replacement ratio of GGBFS are derived with intended service life. The changes of surface chloride content and cover depth show 3.16~3.38 and 3.02~3.34 times of service life variation, which are most influencing parameters. Critical chloride content shows 1.53~1.57 times of service life variation regardless of w/b(Water to Binder) ratios. In the case of surface chloride content $18.0kg/m^3$, the most severe condition, cover depth over 70 mm and GGBFS replacement ratio over 42% are required with concrete containing w/b ratio under 0.42 for 100 years of intended service life. The condition of $13.0kg/m^3$, GGBFS replacement over 35% is required. For reasonable durability design, quantitative exterior condition and critical chloride content should be determined, and the criteria in Domestic Specification is evaluated to be conservative.

The Reinforcing Effect of Blade Attached Pile to Support Submerged Breakwater (보강날개로 보강된 수중잠제 지지말뚝의 보강효과 분석)

  • Jeong, Sangseom;Hong, Moonhyun;Ko, Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.863-874
    • /
    • 2015
  • The use of pile reinforcement is considered as one of the most promising techniques for improving load carrying capacity of piles in offshore area. In this study, to consider the horizontal and uplift bearing capacity of submerged breakwater bearing pile, exclusive analysis on load-transfer behaviour of pile was conducted. First of all, check the reinforcing effect from the three-dimensional finite element method, and estimate load transfer curve (ground reaction force). Based on these results, the reinforcing effect was quantified by estimating the coefficients of horizontal and uplift reinforcement of reinforced piles. Load transfer function with consideration of the reinforcing effect was proposed from estimated coefficients. A comparison of the analysis using the proposed load transfer function with three-dimensional finite element analysis has resulted that the proposed load transfer function is displaying good accuracy of predicting behavior of the load transfer between the pile and soil reinforcement. Interpretation of the submerged structure by applying a load transfer function considering the reinforcing effect, has shown that the reinforced pile's shear, bending moment and displacement are less than that of non-reinforced piles, while the subgrade reaction modulus arises greater. Thus, it is expected to be relatively cost effective in terms of design.

Active Coping Strategy Model for Chronic Arthritis : Appling Internal Model of World and Coping Resource (내적모형과 대응자원을 이용한 만성관절염 환자의 적극적 대응전략모형)

  • Mun, Mi-Sook;Lim, Nan-Young
    • Journal of muscle and joint health
    • /
    • v.6 no.1
    • /
    • pp.100-135
    • /
    • 1999
  • Typical symptoms of rheumatic disease affect overall daily living and cause severe stress. Individuals afflicted with rheumatic disease have many illness-related stresses. Pain was the predominantly perceived stress followed by limitation in mobility, difficulties in carrying out activities of daily living. helplessness, dependency on others, threat to self-esteem, interference in social activity, interference in family relationships. difficulties performing at work, and discomfort of the treatment. Patients with chronic arthritis are subjected to long periods of continuous stress, which may require the management by the health care provider. In these cases, the purpose of the nursing is helping to promote health through supporting patient's coping. Therefore, for the nursing intervention to be effective, it is critical to build a theoretical framework that describes stress-coping for chronic arthritis. Thus, the purpose of this dissertation is to present a theoretical framework which describes the stress-coping processes and to empirically test pathos of this framework for the people with chronic arthritis. The foundation upon which this framework is built in the Erickson, Tomlin, and Swain(1983) theory of Modeling and role-Modeling. The subjects were 275 patients with rheumatoid arthritis or osteoarthritis who visited the outpatient clinic. A hypothetical model of stress-coping was tested by covariance structure analysis with PC-LISREL 8.12 program. As a result, the overall fit was good(Chi-square=94.49, P=0.00, RMR=0.067, GFI=0.95, AGFI=0.91, NNFI=0.93, NFI=0.91) for the hypothetical model. The results of hypothesis testing were as follows : Basic need satisfaction had a statistically significant influence on illness-related experience, emotional stress and coping resources. Internal health locus of control had a statistically significant influence on coping resources. However, independent variables(basic need satisfaction, internal health locus of control, illness-related experience, emotional stress and coping resource) did not have significantly influence on coping. And then, the hypothetical model was modified by considering both the theoretical implication and statistical significance of the parameter estimates. The revised model had a better fit to the data(Chi-square=83.11(P=0.00), RMR=0.061, GFI=0.96, AGFI=0.92, NNFI=0.95, NFI=0.92). Hypothesis emerged from the revised model was tested. The results of hypothesis testing were as follows : Basic need satisfaction had a statistically significant influence on illness-related experience, emotional stress and coping resources. Internal health locus of control had a statistically significant influence on illness-related experience and coping resources. Internal health locus of control, illness-related experience, emotional stress and coping resources had a significantly influence on coping. According to the results of this dissertation, basic need satisfaction and internal health locus of control play a central role in appraisal of illness-related experience and coping resources. And illness related-experience, emotional stress, and coping resources affect on coping activities. In summary, nursing interventions to enhance basic need satisfaction and internal health locus of control will decrease illness related experience and emotional stress and increase coping resources. Increased coping resources will prompt coping activities.

  • PDF

Calibration of a UAV Based Low Altitude Multi-sensor Photogrammetric System (UAV기반 저고도 멀티센서 사진측량 시스템의 캘리브레이션)

  • Lee, Ji-Hun;Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.31-38
    • /
    • 2012
  • The geo-referencing accuracy of the images acquired by a UAV based multi-sensor system is affected by the accuracy of the mounting parameters involving the relationship between a camera and a GPS/INS system as well as the performance of a GPS/INS system. Therefore, the estimation of the accurate mounting parameters of a multi-sensor system is important. Currently, we are developing a low altitude multi-sensor system based on a UAV, which can monitor target areas in real time for rapid responses for emergency situations such as natural disasters and accidents. In this study, we suggest a system calibration method for the estimation of the mounting parameters of a multi-sensor system like our system. We also generate simulation data with the sensor specifications of our system, and derive an effective flight configuration and the number of ground control points for accurate and efficient system calibration by applying the proposed method to the simulated data. The experimental results indicate that the proposed method can estimate accurate mounting parameters using over five ground control points and flight configuration composed of six strips. In the near future, we plan to estimate mounting parameters of our system using the proposed method and evaluate the geo-referencing accuracy of the acquired sensory data.

Retrieval of Relative Surface Temperature from Single-channel Middle-infrared (MIR) Images (단일밴드 중적외선 영상으로부터 표면온도 추정을 위한 상대온도추정알고리즘의 연구)

  • Wook, Park;Won, Joong-Sun;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.95-104
    • /
    • 2013
  • In this study, a novel method is proposed for retrieving relative surface temperature from single-channel middle infra-red (MIR, 3-5 ${\mu}m$) remotely sensed data. In order to retrieve absolute temperature from MIR data, it is necessary to accommodate at least atmospheric effects, surface emissivity and reflected solar radiance. Instead of retrieving kinematic temperature of each target, we propose an alternative to retrieve the relative temperature between two targets. The core idea is to minimize atmospheric effects by assuming that the differential at-sensor radiance between two targets experiences the same atmospheric effects. To reduce effective simplify atmospheric parameters, each atmospheric parameter was examined by MODTRAN and MIR emissivity derived from ASTER spectral libraries. Simulation results provided a required accuracy of 2 K for materials with a temperature of 300 K within 0.1 emissivity errors. The algorithm was tested using MODIS band 23 MIR day time images for validation. The accuracy of retrieved relative temperature was $0.485{\pm}1.552$ K. The results demonstrated that the proposed algorithm was able to produce relative temperature with a required accuracy from only single-channel radiance data. However, this method has limitations when applied to materials having very low temperatures using day time MIR images.