• Title/Summary/Keyword: effective modification method

Search Result 315, Processing Time 0.027 seconds

FE Model Updating on the Grillage Model for Plate Girder Bridge Using the Hybrid Genetic Algorithm and the Multi-objective Function (하이브리드 유전자 알고리즘과 다중목적함수를 적용한 플레이트 거더교의 격자모델에 대한 유한요소 모델개선)

  • Jung, Dae-Sung;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.13-23
    • /
    • 2008
  • In this study, a finite element (FE) model updating method based on the hybrid genetic algorithm (HGA) is proposed to improve the grillage FE model for plate girder bridges. HGA consists of a genetic algorithm (GA) and direct search method (DS) based on a modification of Nelder & Mead's simplex optimization method (NMS). Fitness functions based on natural frequencies, mode shapes, and static deflections making use of the measurements and analytical results are also presented to apply in the proposed method. In addition, a multi-objective function has been formulated as a linear combination of fitness functions in order to simultaneously improve both stiffness and mass. The applicability of the proposed method to girder bridge structures has been verified through a numerical example on a two-span continuous grillage FE model, as well as through an experimental test on a simply supported plate girder skew bridge. In addition, the effect of measuring error is considered as random noise, and its effect is investigated by numerical simulation. Through numerical and experimental verification, it has been proven that the proposed method is feasible and effective for FE model updating on plate girder bridges.

STDUY ON THE SURFACE MORPHOLOGE AND SHEAR BOND STRENGTH OF IN-CERAM CORE TO RESIN CEMENT AFTER VARING MODES OF SURFACE CONDITIONING (In-Ceram 코아의 표면처리 방법에 따른 레진 시멘트와의 결함강도 및 표면상태에 관한 연구)

  • Kim, Yeung-Sug;Woo, Yi-Hyung;Lim, Ho-Nam;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.693-704
    • /
    • 1995
  • This study was performed to evaluate effective surface conditioning method of In-Ceram core to improve bonding with resin cement. The surface of each sample was avraded with glass bead for 20 seconds and then subjected to one of the following conditions : no modification, sandblasting with $50{\mu}m$ slumimum oxide powders for 20 seconds, etching with 20% hydrofluoric acid for 5, 10, and 15 minutes(half of the etched samples were coated with silane), and sandblasting with $250{\mu}m$ aluminum oxide powders and silica coating whith Silicoater MD system(Kulzer, Germany). The surface morphology changes were examined with scanning electronic microscope(SEM. and the shear bond strength of In-Ceram core samples to resin cement(Panavis 21, Kurayay, Japan) were measured. It was concluded that : 1. By SEM observation, 20% HF acid etching did not create clear microretentive structure and surface roughness diminished with increace in etching time. Sandblasting was more effective than 20% hydrofluoric acid etching in producing microretentive structure. 2. The bond strengths of all In-Ceram core samples surface conditioned were increased that that of control group. 3. Silica coating showed higher bond strength than etching with 20% hydrofluoric acid. 4. The use of silane coating was more effective in improving bond strength than lengthening etching time.

  • PDF

A cost-effective method to prepare size-controlled nanoscale zero-valent iron for nitrate reduction

  • Ruiz-Torres, Claudio Adrian;Araujo-Martinez, Rene Fernando;Martinez-Castanon, Gabriel Alejandro;Morales-Sanchez, J. Elpidio;Lee, Tae-Jin;Shin, Hyun-Sang;Hwang, Yuhoon;Hurtado-Macias, Abel;Ruiz, Facundo
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.463-473
    • /
    • 2019
  • Nanoscale zero-valent iron (nZVI) has proved to be an effective tool in applied environmental nanotechnology, where the decreased particle diameter provides a drastic change in the properties and efficiency of nanomaterials used in water purification. However, the agglomeration and colloidal instability represent a problematic and a remarkable reduction in nZVI reactivity. In view of that, this study reports a simple and cost-effective new strategy for ultra-small (< 7.5%) distributed functionalized nZVI-EG (1-9 nm), with high colloidal stability and reduction capacity. These were obtained without inert conditions, using a simple, economical synthesis methodology employing two stabilization mechanisms based on the use of non-aqueous solvent (methanol) and ethylene glycol (EG) as a stabilizer. The information from UV-Vis absorption spectroscopy and Fourier transform infrared spectroscopy suggests iron ion coordination by interaction with methanol molecules. Subsequently, after nZVI formation, particle-surface modification occurs by the addition of the EG. Size distribution analysis shows an average diameter of 4.23 nm and the predominance (> 90%) of particles with sizes < 6.10 nm. Evaluation of the stability of functionalized nZVI by sedimentation test and a dynamic light-scattering technique, demonstrated very high colloidal stability. The ultra-small particles displayed a rapid and high nitrate removal capacity from water.

Digital Video Scrambling Method using Intra Prediction Mode of H.264 (H.264 인트라 예측 모드를 이용한 디지털 비디오 스크램블링 방법)

  • Ahn Jinhaeng;Jeon Byeungwoo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.59-68
    • /
    • 2005
  • The amount of digitalized contents has been rapidly increased, but the main distribution channel of them is Internet which is easily accessible. Therefore 'security' necessarily arises as one of the most important issues and the method of protecting contents becomes a major research topic as much as data coding techniques. In recent years, many developers have studied on techniques that allow only authorized person to access contents. Among them the scrambling method is one of well-known security techniques. In this paper, we propose a simple and effective digital video scrambling method which utilizes the intra block properties of a recent video coding technique, H.264. Since intra prediction modes are adopted in H.264 standard, it is easy to scramble a video sequence with modification of the intra prediction modes. In addition to its simplicity, the proposed method does not increase bit rate after scrambling. The inter blocks are also distorted by scrambling intra blocks only. This paper introduces a new digital video scrambling method and verifies its effectiveness through simulation.

Fast Detection of Video Copy Using Spatio-Temporal Group Feature (시공간 그룹특징을 사용한 동영상 복사물의 고속 검색)

  • Jeong, Jae Hyup;Lee, Jun Woo;Kang, Jong Wook;Jeong, Dong Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.64-73
    • /
    • 2012
  • In this paper, we propose a method to search for identical videos. The proposed method is spatio-temporal group feature fingerprinting. Frame of video is extracted from fixed rate method and is partitioned into vertical group and horizontal group. Descriptor is made of each group feature that is extracted from binary fingerprinting. Next, use descriptor of original video to build a two type of fingerprinting database and matching with query video. To efficient and effective video copy detection, method have high robustness, independence, matching speed. In proposed method, group feature have high robustness and independence in variable modification of video. Building a original fingerprinting database is able to fast matching with query video. The proposed method shows performance improvement in variable modifications in comparison to the existing methods. Especially, very singular performance in speed improvement is great advantage of this paper.

A Study on the Hull Form Design of a G/T 199ton Class Fishing Boat for Both Fish-luring Lighting and Fish Carrying in Korean Large Purse Seiner Fishing System (G/T 199톤급 우리나라 대형선망 등선 겸용 운반어선의 선형설계에 관한 연구)

  • Park, Ae-Seon;Lee, Young-Gill;Jin, Song-Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.5
    • /
    • pp.391-399
    • /
    • 2012
  • This paper presents a method of hull form design for the assistant vessel which is used both as a lighting boat and a fish carrying boat for the fleet of newly formated purse seiner vessels. The optimum hull form parameters are searched by the Sequential Quadratic Programing(SQP) method with the power estimation method of Van Oortmerssen. The prismatic curve is redesigned from that of the reference hull by the Lackenby method. Through the modification of the hull form by using a CAD system, the design procedure is completed. The resistance performances of the reference and the modified hull forms are estimated by using a numerical simulation method. Also, the estimation of seakeeping ability and stability for the modified hull forms are carried out. And then, an optimum hull form is proposed for the designed hull form. Ship model tests for the reference and the designed hull forms are carried out at ship model basin. The results of the experiments show that the effective horse power of the designed hull form is about 22% smaller than that of the reference hull form at design speed. The designed hull form proposed in this study will contribute to the development of the hull form for Korean large purse seiner vessels.

(Effective Intrusion Detection Integrating Multiple Measure Models) (다중척도 모델의 결합을 이용한 효과적 인 침입탐지)

  • 한상준;조성배
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.397-406
    • /
    • 2003
  • As the information technology grows interests in the intrusion detection system (IDS), which detects unauthorized usage, misuse by a local user and modification of important data, has been raised. In the field of anomaly-based IDS several artificial intelligence techniques such as hidden Markov model (HMM), artificial neural network, statistical techniques and expert systems are used to model network rackets, system call audit data, etc. However, there are undetectable intrusion types for each measure and modeling method because each intrusion type makes anomalies at individual measure. To overcome this drawback of single-measure anomaly detector, this paper proposes a multiple-measure intrusion detection method. We measure normal behavior by systems calls, resource usage and file access events and build up profiles for normal behavior with hidden Markov model, statistical method and rule-base method, which are integrated with a rule-based approach. Experimental results with real data clearly demonstrate the effectiveness of the proposed method that has significantly low false-positive error rate against various types of intrusion.

Surface Modification of Recycled Plastic Film-Based Aggregates for Use in Concrete (폐플라스틱 복합필름 기반 콘크리트용 골재의 표면 개질)

  • Kim, Tae Hun;Lee, Jea Uk;Hong, Jin-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.295-302
    • /
    • 2021
  • Surface modification of recycled plastic film-based aggregates is demonstrated to enhance the interaction between aggregates and cement paste. It is shown that the oxygen(O2) atmospheric pressure plasma(APP) treatment leads to a drastic increase in hydrophilicity. In case of the plasma treatment at 100W of RF power, 15/4sccm of O2/Ar flow rate and 30sec of discharging time, the water contact angle on the aggregates surface decreased from 104.5° to 44.0°. In addition, the contact angle of surface modified aggregates kept in air increased with time elapse. Improvement of hydrophilicity can be explained by the formation of new hydrophilic oxygen functional groups which is identified as C-OH, C-O-C, C=O, -COOH by X-ray photoelectron spectroscopy(XPS) analysis and Fourier-transform infrared spectroscopy(FT-IR). Therefore, it can be concluded that the plasma treatment process is an effective method to improve adhesion of the recycled plastic film-based aggregates and cement paste.

A Modification in the Analysis of the Growth Rate of Short Fatigue Cracks in S45C Carbon Steel under Reversed Loading (반복하중조건 하에서의 S45C 탄소강에 대한 미소피로균열 성장속도 해석의 수정)

  • McEvily,A.J.
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.96-105
    • /
    • 1995
  • A modified method for the analysis of short fatigue crack growth has been presented, and calculations based upon the modified method are compared with experimental results for S45C carbon steel. It is also shown that the modified method is in good agreement with experimental data. The proposed equation for the fatigue crack growth rates includes a material constant which relates the threshold level to the endurance limit, a correction for elastic-plastic behaviour and a means for dealing with the effects of crack closure. In this study one of the modifications is to substitute the Forman' s elastic expression of the stress intensity factor range into the geometrical factor The other is a consideration of the bending effect which is developed from the moment caused by the eccentric cross sectional geometry as the crack grows. Thus, this method is useful for residual life prediction of the mechanical structures as well as the welding structures.

  • PDF

Deformation analysis of high CFRD considering the scaling effects

  • Sukkarak, Raksiri;Pramthawee, Pornthap;Jongpradist, Pornkasem;Kongkitkul, Warat;Jamsawang, Pitthaya
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.211-224
    • /
    • 2018
  • In this paper, a predictive method accounting for the scaling effects of rockfill materials in the numerical deformation analysis of rockfill dams is developed. It aims to take into consideration the differences of engineering properties of rockfill materials between in situ and laboratory conditions in the deformation analysis. The developed method is based on the modification of model parameters used in the chosen material model, which is, in this study, an elasto-plastic model with double yield surfaces, i.e., the modified Hardening Soil model. Datasets of experimental tests are collected from previous studies, and a new dataset of the Nam Ngum 2 dam project for investigating the scaling effects of rockfill materials, including particle size, particle gradation and density, is obtained. To quantitatively consider the influence of particle gradation, the coarse-to-fine content (C/F) concept is proposed in this study. The simple relations between the model parameters and particle size, C/F and density are formulated, which enable us to predict the mechanical properties of prototype materials from laboratory tests. Subsequently, a 3D finite element analysis of the Nam Ngum 2 concrete face slab rockfill dam at the end of the construction stage is carried out using two sets of model parameters (1) based on the laboratory tests and (2) in accordance with the proposed method. Comparisons of the computed results with dam monitoring data indicate that the proposed method can provide a simple but effective framework to take account of the scaling effect in dam deformation analysis.