• 제목/요약/키워드: effective diffusion

Search Result 844, Processing Time 0.028 seconds

LPG-DME Stratified Charge Compression Ignition Engine (LPG-DME 성층혼합 압축착화 엔진)

  • Bae, Choong-Sik;Yeom, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.672-679
    • /
    • 2007
  • The combustion characteristics of a liquefied petroleum gas-di-methyl ether (LPG-DME) compression ignition engine was investigated under homogeneous charge and stratified charge conditions. LPG was used as the main fuel and injected into the combustion chamber directly. DME was used as an ignition promoter and injected into the intake port. Different LPG injection timings were tested to verify the combustion characteristics of the LPG-DME compression ignition engine. The combustion was divided into three region which are homogeneous charge, stratified charge, and diffusion flame region according to the injection timing of LPG. The hydrocarbon emission of stratified charge combustion was lower than that of homogeneous charge combustion. However, the carbon monoxide and nitrogen oxide emission of stratified charge combustion were slightly higher than those of the homogeneous charge region. The indicated mean effective pressure was reduced at stratified charge region, while it was almost same level as the homogeneous charge combustion region at diffusion combustion region. The start of combustion timing of the stratified charge combustion and diffusion combustion region were advanced compared to the homogeneous charge combustion. It attributed to the higher cetane number and mixture temperature distribution which locally stratified. However, the knock intensity was varied as the homogeneity of charge was increased.

A Study on the Macro-Scopic Spray Characteristic of Homogeneous Degree for the GDI Injector According to Mixture(Gasoline-Diesel) Ratio Using Mie-Scattering Method and the Entropy Analysis (Mie 산란 방법과 엔트로피 해석 방법을 이용한 혼합연료비에 따른 분무 균질도 특성에 관한 연구)

  • Lee, Chang-Hee;Lee, Ki-Hyung;Lee, Chang-Sik;;Bae, Jae-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.69-75
    • /
    • 2003
  • In this study, his technique was applied to a GDI spray in order to investigate the mixture distribution. In addition, the homogeneity degree and diffusion effect according to ambient temperature in the high pressure chamber were analyzed by using an entropy analysis method. From this experiment, we could find that entropy analysis is very effective method for the analysis of mixture formation, and the entropy values increase with the progress of uniformity in diffusion Process. we tried to provide the fundamental data for parameter which effects on the spray macroscopic characteristics with mixture ratio of diesel and gasoline. In addition, the mixture formation was analyzed by using entropy analysis. The entropy analysis is based on the concept of statistical entropy, and it identifies the degree of homogeneity in the fuel concentration. From the entropy analysis results we could find that the direct diffusion phenomena is a dominant factor in the formation of a homogeneous mixture at downstream of GDI spray especially in vaporizing conditions. As to increasing ambient temperature and increasing gasoline rate, the entropy intensity using the statistic thermodynamics method is increased because evaporation rate is higher gasoline than diesel.

Improving Electrochemical Properties of LiFePO4 by Doping with Gallium

  • Nguyen, Van Hiep;Park, Ju-Young;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.320-323
    • /
    • 2014
  • Ga-doped $LiFePO_4$ cathode materials were synthesized using a hydrothermal method. The microstructural characteristics and electrochemical performances were systematically investigated using field emission scanning electron microscopy, high-resolution X-ray diffraction, energy dispersive X-ray spectroscopy, charge-discharge cycling, cyclic voltammetry, and electrochemical impedance spectroscopy. Among the as-prepared samples, $LiFe_{0.96}Ga_{0.04}PO_4$ demonstrates the best electrochemical properties in terms of discharge capacity, electrochemical reversibility, and cycling performance with an initial discharge capacity of $125mAh\;g^{-1}$ and high lithium ion diffusion coefficient of $1.38{\times}10^{-14}cm^2s^{-1}$ (whereas for $LiFePO_4$, these were $113mAh\;g^{-1}$ and $8.09{\times}10^{-15}cm^2\;s^{-1}$, respectively). The improved electrochemical performance can be attributed to the facilitation of Li+ ion effective diffusion induced by $Ga^{3+}$ substitution.

Error Analysis of Muskingum-Cunge Flood Routing Method (Muskingum-Cunge 홍수추적 방법의 오차해석)

  • Kim, Dae-Geun;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.751-760
    • /
    • 2003
  • Error analysis of finite difference equation on the Muskingum-Cunge flood routing method with free time and space weighting factor was carried out. The error analysis shows that the numerical solution of the Muskingum-Cunge method becomes diverged with time when the sum of time weighting factor and space weighting factor is greater than 1.0. Numerical diffusion increases when the sum of time weighting factor and space weighting factor decreases. Numerical diffusion and numerical oscillation increase when the grid resolution is coarse. Numerical experiments and field applications show that the Muskingum-Cunge method with free space weighting factor is more effective for simulating the flood routing with great peak diminution than conventional Muskingum-Cunge method with fixed space weighting factor, 0.5.

The self induced secular evolution of gravitating systems.

  • Pichon, Christophe
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.37.1-37.1
    • /
    • 2017
  • Since the seminal work of Perrin, physicists have understood in the context of kinetic theory how ink slowly diffuses in a glass of water. The fluctuations of the stochastic forces acting on water molecules drive the diffusion of the ink in the fluid. This is the archetype of a process described by the so-called fluctuation-dissipation theorem, which universally relates the rate of diffusion to the power spectrum of the fluctuating forces. For stars in galaxies, a similar process occurs but with two significant differences, due to the long-range nature of the gravitational interaction: (i) for the diffusion to be effective, stars need to resonate, i.e. present commensurable frequencies, otherwise they only follow the orbit imposed by their mean field; (ii) the amplitudes of the induced fluctuating forces are significantly boosted by collective effects, i.e. by the fact that, because of self-gravity, each star generates a wake in its neighbours. In the expanding universe, an overdense perturbation passing a critical threshold will collapse onto itself and, through violent relaxation and mergers, rapidly converge towards a stationary, phase-mixed and highly symmetric state, with a partially frozen orbital structure. The object is then locked in a quasi-stationary state imposed by its mean gravitational field. Of particular interests are strongly responsive colder systems which, given time and kicks, find the opportunity to significantly reshuffle their orbital structure towards more likely configurations. This presentation aims to explain this long-term reshuffling called gravity-driven secular evolution on cosmic timescales, described by extended kinetic theory. I will illustrate this with radial migration, disc thickening and the stellar cluster in the galactic centre.

  • PDF

A Three-Dimensional Nodal Diffusion Code Based on the AFEN Methodology (해석함수전개 노달방법에 기초한 3차원 노달확산 코드)

  • Hong, Ser-Gi;Cho, Nam-Zin;Noh, Jae-Man
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.870-876
    • /
    • 1995
  • In this paper, a new three-dimensional nodal diffusion code which is based on the AFEN methodology is described and tested. The method expands the homogeneous flux within a node in ter-ms of eighteen analytic basis functions satisfying the diffusion equation at any point of the node. And the nodal coupling equations are derived such that nodal balance, current continuity and leakage balance within an infinitesimally small box around the edge are satisfied. To verify its accuracy, the code was applied to the well-known static LMW benchmark problem and a small core benchmark problem that has the same material properties as the three-dimensional IAEA benchmark problem and compared with two other codes (QUANDRY, VENTURE). The results show that the code provides good accuracy both in the power distribution and in the effective multiplication factor.

  • PDF

Membrane Diffusion through Flexible-Wall Permeameter for Soil Flushing Tests (연성벽체 투수기를 이용한 흙세척 실험시 벽막을 통한 확산량 산정)

  • Junboum Park;Jee-Sang Kim
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.95-103
    • /
    • 1997
  • Solvent extraction using aqueous solutions is presumed as one of the most effective methods applicable to in situ conditions without excavation of contaminated soils. Laboratory permeameter soil flushing test is performed to describe the process of solvent extraction of contaminants absorbed on soil particles. When the permeameter tests conducted, diffusion of contaminants through the permeameter flexible-wall was considered for adjusting the remediation percentage. Input and output balance for concentration was well matched in the permeameter tests. Nitrobenzene diffused so excessively (approximately 75%) that it was not suitable for the permeameter desorption tests. No biodegradation was detected in the soil samples.

  • PDF

Large Eddy Simulation for a 2-D hydrofoil using VIC(Vortex-In-Cell) method (VIC 방법을 사용한 2차원 날개의 LES 해석)

  • Kim, M.S.;Kim, Y.C.;Suh, J.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.407-413
    • /
    • 2011
  • VIC (Vortex-In-Cell) method for viscous incompressible flow is presented to simulate the wake behind a modified NACA16 foil. With uniform rectangular grid, the velocity in field is calculated using streamfunction from vorticity field by solving the Poisson equation in which FFT(Fast Fourier Transform) is combined with 2nd order finite difference scheme. Here, LES(Large Eddy Simulation) with Smagorinsky model is applied for turbulence calculation. Effective viscosity is formulated using magnitude of strain tensor(or vorticity). Then the turbulent diffusion as well as viscous diffusion becomes particle strength exchange(PSE) with averaged eddy viscosity. The well-established panel method is combined to obtain the irrotational velocity and to apply the no-penetration boundary condition on the body panel. And wall diffusion is used for no-slip condition numerical results of turbulent stresses are compared with experimental results (Bourgoyne, 2003). Before comparing process, LES(Large Eddy Simulation) SGS(Subgrid scale) stress is transformed Reynolds averaged stress (Winckelmans, 2001).

  • PDF

Preservative Treatment of Thinned Small-diameter Logs by Double-diffusion Processes (이중(二重) 확산처리법(擴散處理法)에 의(依)한 간벌(間伐) 소경재(小經材)의 방부처리(防腐處理))

  • Kim, Gyu-Hyeok;Kim, Jae-Jin;Jee, Woo-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.7-17
    • /
    • 1991
  • The feasibility of treating three softwood(Japanese larch pitch pine, and Korean pine) thinned logs by double-diffusion treatment processes was investigated. Some posts were incised before immersion, and others were imersed in hot copper sulfate solution. Comparison among species indicated that. in general, pitch pine was most treatable and Japanese larch least treatable. For all three species, almost all treatment schedules gave consistently good penetration and high net retention, but very steep gradient of preservative distribution. As expected, the treatability was increased by the extension of immersion time, increased concentration of treating solution, incising. and heating of the first solution. Of the variables tested, it appears that heating of the first solution is the most important. From the data in this paper, it may be concluded that, if the first solution is not heated, the best schedule is #3. If the first solution is healed. it appears the best schedules are #10 or #11. Since heating of the first solution improves the treatability. schedules # 10 or :#11 are recommended if the cost of heating might be justified. The data presented in this paper indicate that double-diffusion treatment processes seem to offer a promise as a comparatively effective and easy-operating method of treating thinned logs for the small-scale production of treated stock.

  • PDF

An Experimental Study on the Flow Characteristics and the Stratification Effects in Visualization Engine Using the DPIV and the Entropy Analysis (DPIV와 엔트로피 해석방법을 이용한 가시화 엔진내의 유동 특성 및 성층효과에 관한 실험적 연구)

  • Lee Changhee;Lee Kihyung;Lee Changsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 2005
  • The objective of this study is to analyse the spray characteristics according to the injection duration under the ambient pressure condition, and the injection timing in the visualization engine. In order to investigate the spray behavior, we obtained the spray velocity using the PIV method that has been an useful optical diagnostics technology, and calculated the vorticity from spray velocity component. These results elucidated the relationship between vorticity and entropy which play an important role in the diffusion process for the early injection case and the stratification process for the late injection case. In addition, we quantified the homogeneous diffusion rate of spray using the entropy analysis based on the Boltzmann's statistical thermodynamics. Using these method, it was found that the concentration of spray droplets caused by the increase of injection duration is more effective than the increase of momentum dissipation. We also found that the homogeneous diffusion rate increased as the injection timing moved to the early intake stroke process and BTDC $50^{\circ}$ was the most efficient injection timing for the stratified mixture formation during the compression stroke.