• Title/Summary/Keyword: effective angle of attack

Search Result 54, Processing Time 0.02 seconds

Performance Evaluation of WWTP Based on Reliability Concept (신뢰성에 기초한 하수처리장 운전효율 평가)

  • Lee, Doo-Jin;Sun, Sang-Woon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.348-356
    • /
    • 2007
  • Statistical and probabilistic method was used in the analysis of data, which is the most effective one in describing the various natures, and the methodology relating the results with the design was developed. Influents and effluents of three treatment plants were analyzed and the focus was made on BOD, COD, SS, IN, TP The fluctuations of influent such as BOD, COD, SS were extremely large and their standard deviations(st.dev) were more than 10 mg/L. but those of TN, TP were small; the st.dev was 6.6 mg/L for TN, 0.6 mg/L for TP, respectively. But, effluent concentration showed consistent pattern regardless of the influent fluctuations, the st.dev was ranged between 0.28 and 4.48 mg/L. Effluent distributional characteristics were as follows; BOD, COD were distributed normally, but SS, TN, and TP, log-normally; unsymmetric and skewed to the right. The coefficient of reliability(COR) based on the results of statistics of data was introduced to evaluate the process performance an4 to reflect the process performance to the process design. The coefficient of reliability relates the design value(the goal) with the standards and it can be used in operating treatment facilities under a certain reliability level and/or in evaluating the reliability of the treatment facilities on operation. Each treated water quality of effluent showed the half of water quality standards in the level of 50% percentile and all treatment plant was achieved 100% probability of water quality standards. It was concluded that the variability of the process performance should be reflected to the design procedure and the standards through the analysis based on the statistics and the probability.

Unguided Rocket Trajectory Analysis under Rotor Wake and External Wind (로터 후류와 외풍에 따른 무유도 로켓 궤적 변화 해석)

  • Kim, Hyeongseok;Chae, Sanghyun;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2018
  • Downwash from helicopter rotor blades and external winds from various maneuvering make an unguided rocket change its trajectory and range. For the prediction of the trajectory and range, it is essential to consider the downwash effect. In this study, an algorithm was developed to calculate 6-Degree-Of-Freedom(6 DOF) forces and moments exerting on the rocket, and total flight trajectory of a 2.75-inch unguided rocket in a helicopter downwash flow field. Using Actuator Disk Model(ADM) analysis result, the algorithm could analyze the entire trajectory in various initial launch condition such as launch angle, launch velocity, and external wind. The algorithm that considered the interference between a fuselage and external winds could predict the trajectory change more precisely than inflow model analysis. Using the developed algorithm, the attitude and trajectory change mechanism by the downwash effect were investigated analyzing the effective angle of attack change and characteristics of pitching stability of the unguided rocket. Also, the trajectory and range changes were analyzed by considering the downwash effect with external winds. As a result, it was concluded that the key factors of the rocket range change were downwash area and magnitude which effect on the rocket, and the secondary factors were the dynamic pressure of the rocket and the interference between a fuselage and external winds. In tailwind case which was much influential on the range characteristics than other wind cases, the range of the rocket rose as increasing the tailwind velocity. However, there was a limit that the range of the rocket did not increase more than the specific tailwind velocity.

Optimal Conditions for As(III) Removal by Filtration System Packed with Different Ratio of Iron-Coated Sand and Manganese-Coated Sand (철 및 망간코팅사 충전비를 달리한 여과시스템에서 3가 비소 제거의 최적 조건)

  • Chang, Yoon-Young;Kim, Kwang-Seob;Song, Ki-Hoon;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1186-1191
    • /
    • 2006
  • Removal efficiency of As(III) through oxidation and adsorption in column reactors was investigated at different ratios of manganese-coated sand(MCS) and iron-coated sand(ICS) : MCS-alone, ICS-alone and both of ICS and MCS. The breakthrough of arsenic immediately occurred from a column reactor with MCS-alone. However, most of the arsenic present in the effluent was identified as As(V) due to the oxidation of As(III) by MCS. While five-times delayed breakthrough of arsenic was observed from a column reactor with ICS-alone. At a complete breakthrough of arsenic, the removed As(III) was 36.1 mg with 1 kg ICS. To find an optimum ratio of ICS and MCS in the column packed with both ICS and MCS, the removal efficiency of As(III) was investigated at three different ratios of ICS/MCS with a fixed amount of ICS. The breakthrough time of arsenic was quite similar in the different ratios ICS/MCS. However, much slower breakthrough of arsenic was observed as the ratio of ICS/MCS decreased. As the ratio of ICS/MCS decreased the concentration of As(III) in the effluent decreased and then showed below 50 ppb at an equal amount of ICS and MCS, suggesting more efficient oxidation of As(III) by greater amount of MCS. When a complete breakthrough of arsenic occurred, the removed total arsenic with an equal amount of ICS and MCS was 68.5 mg with 1 kg of filter material.

Study on the Aerodynamic Characteristics of an Wing Depending on the Propeller Mounting Position (프로펠러 장착 위치에 따른 날개의 공력 특성 변화 연구)

  • Inseo, Choi;Cheolheui, Han
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.54-63
    • /
    • 2022
  • Recently, electric propulsion aircraft with various propeller mounting positions have been under construction. The position of the propeller relative to the wing can significantly affect the aerodynamic performance of the aircraft. Placing the propeller in front of the wing produces a complex swirl flow behind or around the propeller. The up/downwash induced by the swirl flow can alter the wing's local effective angle of attack, causing a change in the aerodynamic load distribution across the wing's spanwise direction. This study investigated the influence of the distance between a propeller and a wing on the aerodynamic loads on the wing. The swirl flow generated by the propeller was modelled using an actuator disk theory, and the wing's aerodynamics were analysed with the VSPAERO tool. Results of the study were compared to wind tunnel test data and established that both axial and spanwise distance between the propeller and the wing positively affect the wing's lift-to-drag ratio. Specifically, it was observed that the lift-to-drag ratio increases when the propeller is positioned higher than the wing.