• Title/Summary/Keyword: effective angle of attack

Search Result 54, Processing Time 0.023 seconds

A PIV Study of Flow Patterns Over Stationary and Pitch-Oscillating Airfoils with Blowing Jet

  • Lee, Ki-Young;Chung, Hyoung-Seog;Cho, Dong-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.111-120
    • /
    • 2008
  • A particle image velocimetry (PIV) technique was employed to investigate the effects of blowing jet on the flow characteristics over stationary and pitch-oscillating airfoils. The Reynolds number was $7.84{\times}10^5$ based on the chord length. It was found that for stationary airfoil cases, continuous and pulsating blowing jets successfully reduced separated wake region at high angles of attack. A comparison study of two different types of jet blowing indicated that pulsating jet is more effective than continuous jet for flow separation control. Pulsating leading-edge blowing postpones flow separation and increased stall angle of attack by $2^{\circ}{\sim}3^{\circ}$. For pitch-oscillating airfoil cases, the PIV results showed that blowing jet efficiently delays the separation onset point during pitch-up stroke, whereas it does not prevent flow separation during pitch-down stroke, even at angles of attack smaller than static ones.

An Experimental Study of Coanda Effect on the Flapped Control Surfaces (콴다효과를 응용한 플랩이 달린 고양력 날개장치에 대한 실험적 연구)

  • 안해성;김효철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.10-16
    • /
    • 2003
  • To investigate the jet effect on circulation control, a segment of model was prepared and inserted horizontally across the test section of the cavitation tunnel. The hydrodynamic forces acting on the model were measured under the 2 dimensional flow behavior. Circulation flow control requires higher flow rate of water jet than boundary layer control does. Jet injection is effective in increasing lift coefficient and the increments reach to 160% in a certain combination of parameters such as an angle of attack, jet flow rate and flap angle. The blown water jet not only reduces form drag but also thrust effect, which is sometimes greater than the form drag in specific conditions.

Analysis of Rocket Booster Separation from Air-Breathing Engine with Kane's Method (Kane 다물체 동력학을 이용한 공기흡입식 추진기관 부스터 분리에 관한 연구)

  • Choi, Jong-Ho;Lim, Jin-Shik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.41-49
    • /
    • 2009
  • The present paper describes a mathematical modeling and simulation of the separation of a solid rocket booster from an air breathing engine vehicle. The vehicle and booster are considered as a multi-connected body and the booster is assumed to move only along the axial direction of the vehicle. The dynamic motion of the vehicle and the booster were modeled by using Kane's method. The aerodynamic forces on the whole system along various positions of booster were calculated by using DATCOM software and the internal pressure force acting on the effective surface during separation was simply calculated with gas dynamics and Taylor MacColl equation. Numerical simulation was done by using Mathworks-Matlab. From the result, the variation of Mach number and angle of attack are not large during the separation, so the variation of pitch angle and the characteristics of inlet flow for varying the Mach number and angle of attack during the separation test can be identified as neglectable values.

A study on the taping techniques of functional golf inner-wear for improving golf swing trajectory & shot distance (골프 스윙궤적 및 비거리 향상을 위한 기능성 골프 이너웨어의 테이핑 기법 연구)

  • Jungwoo Kim
    • The Research Journal of the Costume Culture
    • /
    • v.32 no.1
    • /
    • pp.58-69
    • /
    • 2024
  • The purpose of this study was to develop the Functional golf inner-wear by preventing the injuries and enhancing the performance of the Golf swing by checking the influence of the wearing of the functional golf inner-wear considering golf characteristics on the Swing trajectory and Shot distance. Functional inner-wear effective for golf swing was manufactured using the sports taping method. Changes in driver and iron swing before and after wearing the functional golf inner-wear manufactured in this way were measured using trackman equipment. Measurement variables were limited to Club Speed, Attack Angle, Club Path, Ball Speed, Smash Factor, and Priority. Before and after wearing functional golf inner-wear, there were statistically significant differences in driver club speed, iron club speed, driver etch angle, iron club pass, driver ball speed, driver smash factor, iron smash factor, driver carry, iron carry, and right shoulder joint proprioceptive sensory ability. As a result, functional golf inner-wear is effective for ball speed, impact, and carry by increasing club speed and efficient swing. Future research will focus on the development of functional golf that can improve the swing ability in a short game that plays an important role in the golf game through various sports taping grafting technique, textile, special material, film, Research on functional golf inner-wear.

Study on Unsteady Forces Acting on a Heaving Foil (히빙운동익에 작용하는 비정상 유체력 특성)

  • Yang, Chang-Jo;Kim, Beom-Seok;Choi, Min-Seon;Lee, Young-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.222-227
    • /
    • 2005
  • A Flapping foil produces an effective angle of attack, resulting in a normal force vector with thrust and lift components, and it can be expected to be a new highly effective propulsion system. A heaving foil model was made and it was operated within a circulating water channel at low Reynolds numbers. The unsteady thrust and lift acting on the heaving foil were measured simultaneously using a 6-axis force sensor based on force and moment detectors. We have been examined various conditions such as heaving frequency and amplitude in NACA 0010 profile. The results showed that thrust coefficient and efficiency increased with reduced frequency and amplitude. We also presented the experimental results on the unsteady fluid forces of a heaving foil at various parameters.

  • PDF

A Study on the Unsteady Fluid Forces Acting on a Heaving Foil (히빙운동익에 작용하는 비정상 유체력 특성)

  • Yang Chang-Jo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.150-156
    • /
    • 2006
  • A Flapping foil Produces an effective angle of attack, resulting in a normal force vector with thrust and lift components, and it can be expected to be a new highly effective propulsion system. A heaving foil model was made and it was operated within a circulating water channel at low Reynolds numbers. The unsteady thrust and lift acting on the heaving foil were measured simultaneously using a 6-axis force sensor based on force and moment detectors. We have been examined various conditions such as heaving frequency and amplitude in NACA 0010 Profile. The results showed that thrust coefficient and efficiency increased with reduced frequency and amplitude. We also Presented the experimental results on the unsteady fluid forces of a heaving foil at various Parameters.

Experimental study on aerodynamic characteristics of conductors covered with crescent-shaped ice

  • Li, Jia-xiang;Fu, Xing;Li, Hong-nan
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.225-234
    • /
    • 2019
  • Conductor galloping is a common disaster for the transmission lines. Among the existing analytical methods, the wind tunnel test is highlighted as the most effective approach to obtain the aerodynamic coefficients. In this paper, the aerodynamic coefficients of 12 conductor models covered with the crescent-shaped ice, which were fabricated considering the surface roughness of the iced conductor, were obtained based on the wind tunnel test. The influence of the Reynolds number and the shape parameter ${\beta}$, defined as the ratio of ice thickness to the diameter, were investigated. In addition, the effect of surface roughness of the iced conductor was discussed. Subsequently, unsteady areas of conductor galloping were calculated according to the Den Hartog criterion and the Nigol criterion. The results indicate that the aerodynamic coefficients of iced conductors change sharply at the attack angles of $20^{\circ}$ and $170^{\circ}$ with the increase of ${\beta}$. The surface roughness of iced conductors changed the range of attack angle, which was influenced by the increase of the Reynolds number. The experimental results can provide insights for preventing and controlling galloping.

The Study on the Hydrodynamic Characteristics of the Single Slot Cambered Otter Board (단일 슬롯 만곡형전개판의 유체역학적 특성에 대한 연구)

  • Park, Kyoung-Hyun;Lee, Ju-Hee;Hyun, Beom-Soo;Bae, Jae-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • This study deals with the experimental and numerical investigations to design the high performance otter board. Experiment was carried out to determine the most effective slot size of single-slot cambered otter board in the circulation water channel of BAEK KYUNG IND. Co. LTD. Numerical analysis was done by the commercial CFD code, FLUENT, to provide some valuable physical interpretations and finally to design the otter board section by numerical method. The major results are as follows ; 1. In experiment, the maximum lift and drag coefficients of simple cambered type otterboard were 1.41, 0.55, respectively, at the angle of attack $28^\circ$, while those of slot one with slot size 0.02C (C denotes the chord length) were 1.72, 0.42 at the angle of attack $24^\circ$. 2. The hydrodynamic characteristics depending upon slot size shows the greatest at 0.02C of the slot size. 3. Numerical results well visualized the streamlines, pressure fields, and speed vectors of a simple cambered and slot cambered otter board with slot size 0.02C. The slot cambered one with slot size 0.02C was shown that pressure field was distributed moderately on front and back side of otter board. And, the delay and decrease of separation were favorably achieved by flow through slot. 4. Computed result on the pattern of hydrodynamic field and the values of $C_L$ and $C_D$ by the commercial CFD code, FLUENT, show almost the same as those of the experimental result.

  • PDF

Investigation of the Swirling Flow Fields of a Gun-Type Gas Burner by the Measurement of a Five-Hole Pressure Probe (5공 압력프로브의 측정에 의한 Gun식 가스버너의 스월유동장 고찰)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.19-23
    • /
    • 2015
  • The swirling flow fields of a gun-type gas burner(GTGB) without a combustion chamber were measured by a straight-type five-hole pressure probe(FHPP) under the cold flow condition. The three kinds of velocity components and the static pressure were calculated by using a non-nulling calibration method covering the velocity reduction performance of the effective flow attack angle of ${\pm}80^{\circ}$. As a result, the velocity and static pressure measured by a FHPP comparatively shows the better performance on the swirling flow of a GTGB than those measured by X-probe.

The Fairing Effects on Aerodynamic Stability of $\pi$-type Sections ($\pi$형 단면의 내풍안정성에 미치는 페어링 효과에 관한 연구)

  • Kim, Hee-Duck
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.113-116
    • /
    • 2006
  • In this paper, the fairing effects on the aerodynamics stability of basic plate-girder sections are investigated trough wind tunnel tests. As basis sections, two types of $\pi$-type shape sections with aspect ratios(D/B) of 1/5 and 1/10 are employed as the basic sections. And three types of triangular fairings are applied such as right-angled triangle(F1), inverted right-angled triangle(F2) and regular triangle(F3). The effects of attack angle on the dynamic response of each section are also investigated. As the results of experiments, fairings F2 is most effective to suppress flutter phenomenon or vortex induced vibration among three types of fairings.

  • PDF