• 제목/요약/키워드: effect of operating conditions

검색결과 817건 처리시간 0.027초

SM 50A 강으로 제작된 T-형 용접형상의 용접후처리 방법이 피로수명 증가에 작용하는 역할 (Role of Post Weld Treatment Methods in the Improvement of Fatigue Life for T-type Welded Structures Made by SM 50A Steel)

  • 한창완;이재훈;송준혁;이현우;박성훈
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.307-312
    • /
    • 2012
  • This study aims to investigate the effect of the post weld treatments on the fatigue life of T-type welded structure made by a SM50A steel material, generally used for excavators, because changes in the geometry, material and surface properties of welded regions affect the fatigue life of welded structures. T-type test specimens were prepared by the CO2 welding of rolled steel plates (SM50A steel) with a thickness of 10 mm at a welding speed of 30 cm/min and these Ttype welded specimens were further treated by UIT (Ultrasonic Impact Treatment) and/or toegrinding post welding treatment methods. In order to investigate improvements on the fatigue life of the samples. 3-point bending fatigue tests were conducted with a stress ratio of R=0.1 under a cyclic loading environment at a frequency of 5 Hz, via a hydraulic fatigue testing machine (${\pm}100\;kN$, MTS 809). The tests were performed at room temperature. The fatigue life of UIT specimens was approximately 25 times longer than that of as-welded specimens at a stress amplitude of 281 MPa, while toe-grinding specimens exhibited 4.15 times longer fatigue life. The current results could provide important guidelines to determine the proper post weld treatment methodologies of T-type welded parts for excavators with a satisfactory fatigue life although under severe operating conditions.

Zr-Sn-Fe-Cr 및 Zr-Nb-Sn-Fe 합금 피복관의 기계적 특성 및 Creep 거동 (Mechanical Properties and Creep Behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe Alloy Cladding Tubes)

  • 이상용;고산;최영철;김규태;최재하;홍순익
    • 한국재료학회지
    • /
    • 제18권6호
    • /
    • pp.326-333
    • /
    • 2008
  • Since the 1990s, the second generation of Zirconium alloys containing main alloy compositions of Nb, Sn and Fe have been used as a replacement of Zircaloy-4 (Zr-Sn-Fe-Cr), a first-generation Zirconium alloy, to meet severe and rigorous reactor operating conditions characterized by high-burn-up, high-power and high-pH operations. In this study, the mechanical properties and creep behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe alloys were investigated in a temperature range of $450{\sim}500^{\circ}C$ and in a stress range of $80{\sim}150\;MPa$. The mechanical testing results indicate that the yield and tensile strengths of the Zr-Nb-Sn-Fe alloy are slightly higher compared to those of Zr-Sn-Fe-Cr. This can be explained by the second phase strengthening of the $\beta$-Nb precipitates. The creep test results indicate that the stress exponent for the steady-state creep rate decreases with the increase in the applied stress. However, the stress exponent of the Zr-Sn-Fe-Cr alloy is lower than that of the Zr-Nb-Sn-Fe alloy in a relatively high stress range, whereas the creep activation energy of the former is slightly higher than that of the latter. This can be explained by the dynamic deformation aging effect caused by the interaction of dislocations with Sn substitutional atoms. A higher Sn content leads to a lower stress exponent value and higher creep activation energy.

플라즈마 전해 산화 처리조건에 따른 다이캐스트 AZ91D Mg 합금 위에 제조된 산화피막 특성 (Effect of Plasma Electrolytic Oxidation Conditions on Oxide Coatings Properties of Die-Cast AZ91D Mg Alloy)

  • 박성준;임대영;송정환
    • 한국재료학회지
    • /
    • 제29권10호
    • /
    • pp.609-616
    • /
    • 2019
  • Oxide coatings are formed on die-cast AZ91D Mg alloy through an environmentally friendly plasma electrolytic oxidation(PEO) process using an electrolytic solution of $NaAlO_2$, KOH, and KF. The effects of PEO condition with different duty cycles (10 %, 20 %, and 40 %) and frequencies(500 Hz, 1,000 Hz, and 2,000 Hz) on the crystal phase, composition, microstructure, and micro-hardness properties of the oxide coatings are investigated. The oxide coatings on die-cast AZ91D Mg alloy mainly consist of MgO and $MgAl_2O_4$ phases. The proportion of each crystalline phase depends on various electrical parameters, such as duty cycle and frequency. The surfaces of oxide coatings exhibit as craters of pancake-shaped oxide melting and solidification particles. The pore size and surface roughness of the oxide coating increase considerably with increase in the number of duty cycles, while the densification and thickness of oxide coatings increase progressively. Differences in the growth mechanism may be attributed to differences in oxide growth during PEO treatment that occur because the applied operating voltage is insufficient to reach breakdown voltage at higher frequencies. PEO treatment also results in the oxide coating having strong adhesion properties on the Mg alloy. The micro-hardness at the cross-section of oxide coatings is much higher not only compared to that on the surface but also compared to that of the conventional anodizing oxide coatings. The oxide coatings are found to improve the micro-hardness with the increase in the number of duty cycles, which suggests that various electrical parameters, such as duty cycle and frequency, are among the key factors controlling the structural and physical properties of the oxide coating.

초음파장치를 이용한 경유-물 유화연료 사용 디젤엔진에 관한 연구 -함수율이 기관성능 및 배기배출물 특성에 미치는 영향- (A Study of the DI Diesel Engine Using Light Diesel-Water Emulsified Fuel with Ultrasonic Apparatus - Effect of Water Content on Engine Performance and Exhaust Gas Characteristics -)

  • 김봉석;이영재
    • 에너지공학
    • /
    • 제6권2호
    • /
    • pp.212-219
    • /
    • 1997
  • 본 연구에서는 경유-물 유화연료를 디젤엔진에 적용하였을 때의 엔진의 성능 및 배기배출물 특성에 대해 고찰하였다. 그 결과, 초음파장치(40 KHz, 200W)로 제조한 경유-물 유화연료 운전시, 경유운전시에 비해 연료소비율(함수율 30%시 최대 28% 감소)과 매연(함수율 30%시 최대 60% 감소) 및 CO(할수율 30%시 최대 79% 감소)의 현격한 개선효과를 보았다. 이러한 플러스적인 효과는 유화연료의 미세폭발에 의한 것으로, 초음파에너지로 유화연료를 제조함과 동시에 엔진내로 공급하는 것이 디젤기관의 배기배출물과 연료소비율을 동시에 개선시킬 수 있는 가장 유력한 방법일 것으로 판명되었다. 그러나, 유화연료를 사용한 경우 상대적으로 경유의 유입량 자체가 줄어들게 됨으로써 엔진의 출력 및 토크는 오히려 감소하였다.

  • PDF

Electrochemical Impedance Characteristics of a Low-Temperature Single Cell for CO2/H2O Co-Reduction to Produce Syngas (CO+H2)

  • Min Gwan, Ha;Donghoon, Shin;Jeawoo, Jung;Emilio, Audasso;Juhun, Song;Yong-Tae, Kim;Hee-Young, Park;Hyun S., Park;Youngseung, Na;Jong Hyun, Jang
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권4호
    • /
    • pp.462-471
    • /
    • 2022
  • In this study, the electrochemical impedance characteristics of CO2/H2O co-reduction to produce CO/H2 syngas were investigated in a low-temperature single cell. The effect of the operating conditions on the single-cell performance was evaluated at different feed concentrations and cell voltages, and the corresponding electrochemical impedance spectroscopy (EIS) data were collected and analyzed. The Nyquist plots exhibited two semicircles with separated characteristic frequencies of approximately 1 kHz and tens of Hz. The high-frequency semicircles, which depend only on the catholyte concentration, could be correlated to the charge transfer processes in competitive CO2 reduction and hydrogen evolution reactions at the cathodes. The EIS characteristics of the CO2/H2O co-reduction single cell could be explained by the equivalent circuit suggested in this study. In this circuit, the cathodic mass transfer and anodic charge transfer processes are collectively represented by a parallel combination of resistance and a constant phase element to show low-frequency semicircles. Through nonlinear fitting using the equivalent circuit, the parameters for each electrochemical element, such as polarization resistances for high- and low-frequency processes, could be quantified as functions of feed concentration and cell voltage.

Effects of load variation on a Kaplan turbine runner

  • Amiri, K.;Mulu, B.;Cervantes, M.J.;Raisee, M.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권2호
    • /
    • pp.182-193
    • /
    • 2016
  • Introduction of intermittent electricity production systems like wind and solar power to electricity market together with the deregulation of electricity markets resulted in numerous start/stops, load variations and off-design operation of water turbines. Hydraulic turbines suffer from the varying loads exerted on their stationary and rotating parts during load variations since they are not designed for such operating conditions. Investigations on part load operation of single regulated turbines, i.e., Francis and propeller, proved the formation of a rotating vortex rope (RVR) in the draft tube. The RVR induces pressure pulsations in the axial and rotating directions called plunging and rotating modes, respectively. This results in oscillating forces with two different frequencies on the runner blades, bearings and other rotating parts of the turbine. This study investigates the effect of transient operations on the pressure fluctuations exerted on the runner and mechanism of the RVR formation/mitigation. Draft tube and runner blades of the Porjus U9 model, a Kaplan turbine, were equipped with pressure sensors for this purpose. The model was run in off-cam mode during different load variations. The results showed that the transients between the best efficiency point and the high load occurs in a smooth way. However, during transitions to the part load a RVR forms in the draft tube which induces high level of fluctuations with two frequencies on the runner; plunging and rotating mode. Formation of the RVR during the load rejections coincides with sudden pressure change on the runner while its mitigation occurs in a smooth way.

Optimization of membrane fouling process for mustard tuber wastewater treatment in an anoxic-oxic biofilm-membrane bioreactor

  • Chai, Hongxiang;Li, Liang;Wei, Yinghua;Zhou, Jian;Kang, Wei;Shao, Zhiyu;He, Qiang
    • Environmental Engineering Research
    • /
    • 제21권2호
    • /
    • pp.196-202
    • /
    • 2016
  • Membrane bioreactor (MBR) technology has previously been used by water industry to treat high salinity wastewater. In this study, an anoxic-oxic biofilm-membrane bioreactor (AOB-MBR) system has been developed to treat mustard tuber wastewater of 10% salinity (calculated as NaCl). To figure out the effects of operating conditions of the AOB-MBR on membrane fouling rate ($K_V$), response surface methodology was used to evaluate the interaction effect of the three key operational parameters, namely time interval for pump (t), aeration intensity ($U_{Gr}$) and transmembrane pressure (TMP). The optimal condition for lowest membrane fouling rate ($K_V$) was obtained: time interval was 4.0 min, aeration intensity was $14.6 m^3/(m^2{\cdot}h)$ and transmembrane pressure was 19.0 kPa. And under this condition, the treatment efficiency with different influent loads, i.e. 1.0, 1.9 and $3.3kgCODm^{-3}d^{-1}$ was researched. When the reactor influent load was less than $1.9kgCODm^{-3}d^{-1}$, the effluent could meet the third discharge standard of "Integrated Wastewater Discharge Standard". This study suggests that the model fitted by response surface methodology can predict accurately membrane fouling rate within the specified design space. And it is feasible to apply the AOB-MBR in the pickled mustard tuber factory, achieving satisfying effluent quality.

하이브리드 슈퍼커패시터의 음극 및 양극 설계에 따른 전기화학적 거동 (Electrochemical Behavior Depending on Designed-Anode and Cathodes of Hybrid Supercapacitors)

  • 신승일;이병관;하민우;안건형
    • 한국재료학회지
    • /
    • 제29권12호
    • /
    • pp.774-780
    • /
    • 2019
  • The performance of Li-ion hybrid supercapacitors (asymmetric-type) depends on many factors such as the capacity ratio, material properties, cell designs and operating conditions. Among these, in consideration of balanced electrochemical reactions, the capacity ratio of the negative (anode) to positive (cathode) electrode is one of the most important factors to design the Li-ion hybrid supercapacitors for high energy storing performance. We assemble Li-ion hybrid supercapacitors using activated carbon (AC) as anode material, lithium manganese oxide as cathode material, and organic electrolyte (1 mol L-1 LiPF6 in acetonitrile). At this point, the thickness of the anode electrode is controlled at 160, 200, and 240 ㎛. Also, thickness of cathode electrode is fixed at 60 ㎛. Then, the effect of negative and positive electrode ratio on the electrochemical performance of AC/LiMn2O4 Li-ion hybrid supercapacitors is investigated, especially in the terms of capacity and cyclability at high current density. In this study, we demonstrate the relationship of capacity ratio between anode and cathode electrode, and the excellent electrochemical performance of AC/LiMn2O4 Li-ion hybrid supercapacitors. The remarkable capability of these materials proves that manipulation of the capacity ratio is a promising technology for high-performance Li-ion hybrid supercapacitors.

세라믹 막여과 정수처리 공정에서 유입수질 및 막여과유속이 막오염 형성에 미치는 영향 (Effects of membrane fouling formation by feed water quality and membrane flux in water treatment process using ceramic membrane)

  • 강준석;박서경;이정준;김한승
    • 상하수도학회지
    • /
    • 제32권2호
    • /
    • pp.77-87
    • /
    • 2018
  • In this study, the effects of operating conditions on the formation of reversible and irreversible fouling were investigated in the filtration using ceramic membrane for water treatment process. The effect of coagulation pretreatment on fouling formation was also evaluated by comparing the performance of membrane filtration both with and without addition of coagulant. A resistance-in-series-model was applied for the analysis of membrane fouling. Total resistance (RT) and internal fouling resistance (Rf) increased in the membrane filtration process without coagulation as membrane flux and feed water concentrations increased. Internal fouling resistance, which was not recovered by physical cleaning, was more than 70% of the total resistance at the range of the membrane flux more than $5m^3/m^2{\cdot}day$. In the combined process with coagulation, the cake layer resistance (Rc) increased to about 30-80% of total resistance. As the cake layer formed by coagulation floc was easily removed by physical cleaning, the recovery rate by physical cleaning was 54~90%. It was confirmed from the results that the combined process was more efficient to recover the filtration performance by physical cleaning due to higher formation ratio of reversible fouling, resulted in the mitigation of the frequency of chemical cleaning.

A Study on Effect of Intake Mixture Temperature upon Fuel Economy and Exhaust Emissions in Diesel Engines with a Scrubber EGR System

  • Bae, Myung--Whan;Ryu, Chang-Seong;Yoshihiro Mochimaru;Jeon, Hyo-Joong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.315-331
    • /
    • 2004
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle. four-cylinder. swirl chamber type. water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas Recirculation (EGR) control system for reducing $\textrm{NO}_{x}$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce $\textrm{NO}_{x}$ emissions. And a novel diesel soot-removal device of cylinder-type scrubber with five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection. however. would be included within those of scrubber EGR system. In order to survey the effects of cooled EGR and moisture on $\textrm{NO}_{x}$ and soot emissions. the intake mixtures of fresh air and recirculated exhaust gas are heated up using a heater with five heating coils equipped in a steel drum. It is found that intake and exhaust oxygen concentrations are decreased, especially at higher loads. as EGR rate and intake mixture temperature are increased at the same conditions of engine speed and load. and that $\textrm{NO}_{x}$ emissions are decreased. while soot emissions are increased owing to the decrease in intake and exhaust oxygen concentrations and the increase in equivalence ratio. Thus ond can conclude that $\textrm{NO}_{x}$ and soot emissions are considerably influenced by the cooled EGR.