• Title/Summary/Keyword: effect of column length

Search Result 147, Processing Time 0.031 seconds

New stability equation for columns in unbraced frames

  • Essa, Hesham S.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.411-425
    • /
    • 1998
  • The effective length factor of a framed column may be determined by means of the alignment chart procedure. This method is based on many unrealistic assumptions, among which is that all columns have the same stiffness parameter, which is dependent on the length, axial load, and moment of inertia of the column. A new approximate method is developed for the determination of effective length factors for columns in unbraced frames. This method takes into account the effects of inelastic column behaviour, far end conditions of the restraining beams and columns, semi-rigid beam-to-column connections, and differentiated stiffness parameters of columns. This method may be implemented on a microcomputer. A numerical study was carried out to demonstrate the extent to which the involved parameters affect the K factor. The beam-to-column connection stiffness, the stiffness parameter of columns, and the far end conditions of restraining members have a significant effect on the K factor of the column under investigation. The developed method is recommended for design purposes.

Field behaviour geotextile reinforced sand column

  • Tandel, Yogendra K.;Solanki, Chandresh H.;Desai, Atul K.
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.195-211
    • /
    • 2014
  • Stone columns (or granular column) have been used to increase the load carrying capacity and accelerating consolidation of soft soil. Recently, the geosynthetic reinforced stone column technique has been developed to improve the load carrying capacity of the stone column. In addition, reinforcement prevents the lateral squeezing of stone in to surrounding soft soil, helps in easy formation of stone column, preserve frictional properties of aggregate and drainage function of the stone column. This paper investigates the improvement of load carrying capacity of isolated ordinary and geotextile reinforced sand column through field load tests. Tests were performed with different reinforcement stiffness, diameter of sand column and reinforcement length. The results of field load test indicated an improved load carrying capacity of geotextile reinforced sand column over ordinary sand column. The increase in load carrying capacity depends upon the sand column diameter, stiffness of reinforcement and reinforcement length. Also, the partial reinforcement length about two to four time's sand column diameter from the top of the column was found to significant effect on the performance of sand column.

Effects of Column Length and Particle Diameter on Phospholipid Analysis by Nanoflow Liquid Chromatography-Electrospray Ionization-Mass Spectrometry

  • Lee, Ju-Yong;Lim, Sang-Soo;Moon, Myeong-Hee
    • Mass Spectrometry Letters
    • /
    • v.2 no.3
    • /
    • pp.65-68
    • /
    • 2011
  • The effects of column length and particle size on the efficiency of separation and characterization of phospholipids (PLs) are investigated using nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS-MS). Since PLs are associated with cell proliferation, apoptosis, and signal transduction, it is of increasing interests in lipidomics to establish reliable analytical methods for the qualitative and quantitative profiling of PLs related to biomarker development in adult diseases. Due to the complexity of PLs, the preliminary separation of PLs is necessary prior to MS analysis. In this study, length of capillary column and the particle size of reversed phase ($C_{18}$) packing materials are varied to find a reliable condition for the high speed and high resolution separation using 8 PL standard mixtures. From experiments, it was found that a capillary column of nLC-ESI-MS-MS analysis for PL mixtures can be minimized to a 5 cm long pulled tip column packed with 3 ${\mu}m$ $C_{18}$ particles without losing resolution.

Effective Length of Reinforced Concrete Columns in Braced Frames

  • Tikka, Timo K.;Mirza, S. Ali
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.99-116
    • /
    • 2014
  • The American Concrete Institute (ACI) 318-11 permits the use of the moment magnifier method for computing the design ultimate strength of slender reinforced concrete columns that are part of braced frames. This computed strength is influenced by the column effective length factor K, the equivalent uniform bending moment diagram factor $C_m$ and the effective flexural stiffness EI among other factors. For this study, 2,960 simple braced frames subjected to short-term loads were simulated to investigate the effect of using different methods of calculating the effective length factor K when computing the strength of columns in these frames. The theoretically computed column ultimate strengths were compared to the ultimate strengths of the same columns computed from the ACI moment magnifier method using different combinations of equations for K and EI. This study shows that for computing the column ultimate strength, the current practice of using the Jackson-Moreland Alignment Chart is the most accurate method for determining the effective length factor. The study also shows that for computing the column ultimate strength, the accuracy of the moment magnifier method can be further improved by replacing the current ACI equation for EI with a nonlinear equation for EI that includes variables affecting the column stiffness and proposed in an earlier investigation.

Numerical Analysis on Strength of Interior Flat Plate-Column Connections according to Column Section Shape (기둥 단면형상에 따른 플랫플레이트-기둥 접합부 강도에 관한 수치해석연구)

  • Kang Su Min;Kim Oak Jong;Lee Do Bum;Park Hong Gun;Chun Young Soo;Lee Hyun Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.291-294
    • /
    • 2005
  • In the present study, a numerical analysis was performed for interior connections of continuous flat plate to analyze the effect of column section shape on the behavioral characteristics of the connections. For the purpose, a computer program for nonlinear FE analysis was developed, and the validity was verified. Through the parametric study, the variations of shear stress distribution around the connection were investigated. According to the result of numerical analysis, the column section shape has a serious effect on the behavior of the connections. As the length of the cross section of column in the direction of lateral load increases, the effective area and the shear strength at the sides providing the torsional resistance decrease considerably. Therefore the strength model for the flat plate-column connections should be modified by considering the effect of column section shape on the behavior of the connections.

  • PDF

Strain penetration of high-strength steel bars anchored in reinforced concrete beam-column connections

  • Li, Ling;Zheng, Wenzhong;Wang, Ying
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.367-382
    • /
    • 2019
  • This paper presents experimental and analytical investigations on additional fixed-end rotations resulting from the strain penetration of high-strength reinforcement in reinforced concrete (RC) beam-column connections under monotonic loading. The experimental part included the test of 18 interior beam-column connections with straight long steel bars and 24 exterior beam-column connections with hooked and headed steel bars. Rebar strains along the anchorage length were recorded at the yielding and ultimate states. Furthermore, a numerical program was developed to study the effect of strain penetration in beam-column connections. The numerical results showed good agreement with the test results. Finally, 87 simulated specimens were designed with various parameters based on the test specimens. The effect of concrete compressive strength ($f_c$), yield strength ($f_y$), diameter ($d_b$), and anchorage length ($l_{ah}$) of the reinforcement in the beam-column connection was examined through a parametric study. The results indicated that additional fixed-end rotations increased with a decrease in $f_c$ and an increase in $f_y$, $d_b$ and $l_{ah}$. Moreover, the growth rate of additional fixed-end rotations at the yielding state was faster than that at the ultimate state when high-strength steel bars were used.

The study for Six Sigma Robust Design of Column part for LCD Transfer system (LCD이송장치 Column부의 식스 시그마 강건설계를 위한 연구)

  • Jung D.W.;Chung W.J.;Song T.J.;Bang D.J.;Yoon Y.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.869-872
    • /
    • 2005
  • This research studied robust design of column part for LCD transfer system. $1^{st}$ DOE(Design of Experiment)was conducted to find out main effect factors. 36 experiments were performed and their results were shows that the geometric parameters(Low-length, Side-length, Upper-thickness, Middle-thickness)are more important than other factors. The main effect plots shows that the maximum deflection of column is minimized with increasing Low-length, Side-length, under-thickness and Middle-thickness. $2^{nd}$ DOE was conducted to obtain RMS(Response Surface Method)equation 25 experiments were conducted. The CCD(Central Composite Design)technique with four factors were used. The coefficient of determination $(R^2)$ for the calculated RSM equation was 0.986. Optimum design was conducted using the RSM equation Multi-island genetic algorithm was used to optimum design. Optimum value for Low-length. Side-length, Upper-thickness and Middle-thickness were 299.8mm, 180.3mm, 21.7mm, 21.9mm respectively. An approximate value of 5.054mm in deflection was expected to be a maximum under the optimum conditions. Six sigma robust design was conducted to find out guideline for control range of design parameter. To acquire six sigma level reliability, the standard deviation of design parameter should be controlled within 2% of average design value.

  • PDF

Influence of ductility of reinforcement on the plastic hinge formation (철근의 연성이 소성힌지 생성에 미치는 영향)

  • Park, Dae-Gyun;Cho, Jae-Yeol;Park, Sung-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.97-100
    • /
    • 2008
  • Subjected to seismic action causing large deformation of bridge columns, the plastic hinge region is commonly formed in the column end zone. The deformation capacity of a concrete column can be expressed by using plastic hinge length. The mechanical properties of high-strength reinforcing steel is different from that of normal-strength steel and the mechanical properties of steel will influence the plastic hinge formation. Therefore, in other to accurately predict the deformation of concrete column using high-strength steel, the plastic hinge length can be expressed as a function of the mechanical properties of steel such as the tensile to yield strength ratio and the strain at ultimate state. However, little research has been conducted into the effect of mechanical properties of steel on the plastic hinge length. It was difficult to measure the plastic hinge length from the test results. Therefore, the plastic hinge length of concrete columns was investigated from the curvature profile. A numerical approach was used to study the effect of various parameters on plastic hinge length. Based on the results of the numerical parametric study, a new expression for plastic hinge length was proposed.

  • PDF

Seismic Performance Evaluation of School Building Short Column Effect (끼움벽과 단주효과를 고려한 학교건축물의 내진성능평가)

  • Ju, Chang-Gil;Han, Ju-Yeon;Park, Tae-Won
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.21 no.2
    • /
    • pp.33-39
    • /
    • 2014
  • In the case of low-rise buildings in seismic performance evaluation, lateral force resistance of the pillars affects the seismic performance of the building. Evaluation of the seismic performance of the column is determined by the holding performance is evaluated by comparing the shear strength and bending strength it was destroyed bylow intensity. In case of the school building, in order to install the large windows for ventilation and lighting of the partition walls are located between the pillars. The case of the pillars of these, shear failure occurs in the event of an earthquake is often, in the seismic performance evaluation, partition wall and the wall of the shim is evaluated ignoring, pillar of the general pillars If you have to calculate the results of the seismic performance distorted that are destroyed by bending behavior can be evaluated as often. Results of the study, when assessed by distinguishing the effective length of the column, it was found that when a seismic load is applied, it is possible to accurately predict the failure mode, reliable results of seismic performance evaluation of the school building.

Analysis of Plastic Hinge of Pile-Bent Structure with Varying Pile Diameters (단일형 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안)

  • Ahn, Sang-Yong;Jeong, Sang-Seom;Kim, Jae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.349-356
    • /
    • 2010
  • In this study, a new design method of pile bent structure considering plastic hinge was proposed on the basis of the beam-column model. Based on the analysis results, it is found that the positioning of plastic hinge on the pile bent structure was influenced by nonlinear behavior of material and p-$\Delta$ effect. Moreover, concrete cracking began to occur at the joint section between the pile and column in case of pile bent structure with different cross-sections. The plastic hinge can be developed on the pile bent structure when large displacement was occurred, and pile bent structures can be maintained well only if it is developed on the column part. Therefore, in this study, the optimized cross-section ratio between column and pile was analyzed to induce the plastic hinge at the joint section between the pile and column. Based on this, the optimized diameter ratio of pile and column can be obtained below the inflection point of the bi-linear curve depending on the relations between column-pile diameter ratio($D_c/D_p$) and normalized lateral cracking load ratio($F/F_{Dc=Dp}$). And through this study, it is founded that in-depth limit($L_{As}$=0.4%) normalized by the pile length($L_P$) are proportionally decreased as the pile length($L_P/D_P$) increases up to $L_P/D_P$=17.5, and beyond that in-depth limit converges to a constant value. Finally, it is found that the proposed limit depth by taking into account the minimum concrete-steel ratio would be more economical design of the pile bent structure.

  • PDF