• Title/Summary/Keyword: edge-coupled patch antenna

Search Result 5, Processing Time 0.018 seconds

Transmission Line Model for an Edge-Coupled Patch Antenna

  • Saksiri, Wiset;Chongcheawchamnan, Mitchai;Krairiksh, Monai
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.723-728
    • /
    • 2008
  • In this paper, a simple transmission line model for an edge-coupled patch antenna is presented. The coupled section is modeled with a lump network which represents the mutual admittance between patches and from patch to ground. Theoretical analysis of two edge-coupled patch antenna models are compared by simulation and experiment in antennas designed to operate at the 2 GHz band. The proposed model predicts the return loss of the antenna accurately.

  • PDF

Design of wideband microstrip antennas using parasitic element (기생소자를 이용한 광대역 마이크로스트립 안테나의 설계)

  • 김태완;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1294-1303
    • /
    • 1996
  • In this paper, the microstrip anntenna with broad bandwidth is designed using parasitic element. In the designed cofiguration, parasitic element of the same resonating length but different width which is coupled to the nonradiating edge of a rectangular patch antenna. The driven element aloe is fed and the other part is operated as parasitic element. So the different patchs are resonating at differnt frequencies and this multiple resonance increase the bandwidth. The overall size of the antenna is not increased by adding parasitic element to a driven patch. Compared to the available wideband microstrip antennas, the designed antenna structure is bery compact. A theoretical explanation of the rectangular patch antenna coupled with prarsitic is analyzed by extending the theory of coupled microstrip lines. The theoretical and experimental results for a patch coupled with a single parasitic are presented.

  • PDF

Near electromagnetic field analysis of HTS microstrip patch antenna (고온초전도 마이크로스트립 패치 안테나의 근거리 전자장 해석)

  • 정동철;허원일;김민기;한태희;한병성
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.783-788
    • /
    • 1996
  • In this paper, the high-$T_c$ , superconductor (HTS) microstrip patch antenna which is directly coupled to a microstrip transmission line is designed and the numerical solution which evaluate near electromagnetic field of HTS antenna is presented. This solution uses the interpolation function with the vector edge triangular element. The advantage of this element is the elimination of spurious solutions attributed to the lack of enforcement of the divergence condition. The results of this method have a good agreement with $TM_10$ mode in HTS microstrip patch antenna and show that the computation of resonant length considering the fringing capacitance effect at radiating edge are proper.

  • PDF

Impact of Substrate Size on the Radiation Characteristics of an H-plane 5-Elements Linear Aperture Coupled Microstrip Patch Array Antenna (기판 크기가 H-평면 5소자 선형 개구면 결합 패치 배열 안테나의 방사 특성에 미치는 영향)

  • Bak, Hye-Lin;Kim, Jae-Hyun;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.37-45
    • /
    • 2016
  • The effect of substrate size on the radiation characteristics of an H-plane 5-elements linear array antenna with an aperture coupled microstrip patch antenna (ACMPA) as unit element is investigated. The distance between the patch center and the substrate edge on the E-plane ($d_E$) and that on the H-plane ($d_H$) at which the maximum broadside gain of an H-plane 5-elements linear array antenna occurs are the same to those of single ACMPA using a unit element. Besides, $d_E$ and $d_H$ at which the minimum broadside gain of an H-plane 5-elements linear array antenna occurs are almost the same to those of single ACMPA using a unit element. The edge effect on the radiation characteristics of an H-plane 5-elements linear array antenna is mainly determined by $d_E$. The optimum substrate size for the radiation characteristics of an H-plane linear array antenna could be obtained from that of single ACMPA using a unit element of an H-plane linear array antenna.

Effect of Substrate Thickness, Perforation Position and Size on the Bandwidth and Radiation Characteristics of a Proximity Coupled Perforated Microstrip Patch Antenna (기판 두께와 천공의 위치 및 크기가 근접 결합 급전을 이용한 천공된 마이크로스트립 패치 안테나의 대역폭과 방사특성에 미치는 영향)

  • Lee, Kyu-Hoon;Kwak, Eun-Hyuk;Kim, Boo-Gyoun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.6
    • /
    • pp.310-321
    • /
    • 2014
  • Effect of substrate thickness, perforation position and size on the bandwidth and radiation characteristics of a proximity coupled perforated microstrip patch antenna (PCPPA) with $2{\times}2$ square perforations inside a patch is investigated. As the thicknesses of antenna substrate and feed substrate increase, the bandwidth of a PCPPA increases without the degradation of radiation characteristics. As the position of a perforation moves toward the edge of a patch along the length direction, the bandwidth of a PCPPA increases without the degradation of radiation characteristics, while the effect of changing the position of a perforation along the width direction on the bandwidth and radiation characteristics of a PCPPA is negligible. As the perforation size is decreased, the bandwidth of a PCPPA is increased and the radiation characteristics of a PCPPA are enhanced.