DOI QR코드

DOI QR Code

Effect of Substrate Thickness, Perforation Position and Size on the Bandwidth and Radiation Characteristics of a Proximity Coupled Perforated Microstrip Patch Antenna

기판 두께와 천공의 위치 및 크기가 근접 결합 급전을 이용한 천공된 마이크로스트립 패치 안테나의 대역폭과 방사특성에 미치는 영향

  • Lee, Kyu-Hoon (Soongsil University Department of Electronic Engineering) ;
  • Kwak, Eun-Hyuk (Soongsil University Department of Electronic Engineering) ;
  • Kim, Boo-Gyoun (Soongsil University Department of Electronic Engineering)
  • Received : 2014.04.04
  • Accepted : 2014.06.10
  • Published : 2014.06.30

Abstract

Effect of substrate thickness, perforation position and size on the bandwidth and radiation characteristics of a proximity coupled perforated microstrip patch antenna (PCPPA) with $2{\times}2$ square perforations inside a patch is investigated. As the thicknesses of antenna substrate and feed substrate increase, the bandwidth of a PCPPA increases without the degradation of radiation characteristics. As the position of a perforation moves toward the edge of a patch along the length direction, the bandwidth of a PCPPA increases without the degradation of radiation characteristics, while the effect of changing the position of a perforation along the width direction on the bandwidth and radiation characteristics of a PCPPA is negligible. As the perforation size is decreased, the bandwidth of a PCPPA is increased and the radiation characteristics of a PCPPA are enhanced.

정사각형 천공이 $2{\times}2$ 배열된 정사각형 패치 안테나에 근접 결합 급전을 이용하여 기판 두께와 천공의 위치 및 크기가 안테나의 대역폭과 방사특성에 미치는 영향에 대하여 연구하였다. 안테나 기판과 급전 기판의 두께가 두꺼워질수록 방사특성의 저하 없이 대역폭이 증가 되었다. 천공 중심의 위치를 패치 길이 방향 가장자리로 이동시키는 경우 방사특성의 큰 저하 없이 대역폭을 증가시킬 수 있었다. 천공 중심의 위치를 패치 폭 방향으로 이동시키는 경우 중심 위치가 대역폭과 방사특성에 미치는 영향이 매우 작았다. 천공의 크기가 작아질수록 대역폭은 증가되고 방사특성은 향상되었다.

Keywords

References

  1. L. L. Shafai, W. A. Chamma, M. Barakat, P. C. Strickland, and G. Seguin, "Dual-band dual-polarized perforated microstrip antennas for SAR applications," IEEE Trans. Antennas Propaga., vol. 48, no. 1, pp. 58-66, Jan. 2000. https://doi.org/10.1109/8.827386
  2. R. Pokuls, J. Uher, and D. M. Pozar, "Dual-frequency and dual-polarization microstrip antennas for SAR applications," IEEE Trans. Antennas Propaga., vol. 46, no. 9, pp. 1289-1296, Sept. 1998. https://doi.org/10.1109/8.719972
  3. S. D. Targonski and D. M. Pozar, "Dual-band dual-polarized antenna element," Electron. Lett., vol. 34, no. 23 pp. 2193-2194, Nov. 1998. https://doi.org/10.1049/el:19981581
  4. L. L. Shafai, W. A. Chamma, G. Seguin, and N. Sultan, "Dual-band dual-polarized microstrip antennas for SAR applications," in IEEE Antennas and Propaga. Symp., pp. 1866-1869, Montreal, Quebec, Canada, Jul. 1997.
  5. D. M. Pozar and S. D. Targonski, "A shared-aperture dual-band dual-polarized microstrip array," IEEE Trans. Antennas Propaga., vol. 49, no. 2, pp. 150-157, Feb. 2001. https://doi.org/10.1109/8.914255
  6. D. M. Pozar and B. Kaufman, "Increasing the bandwidth of a microstrip antenna by proximity coupling," Electron. Lett., vol. 23, no. 8, pp. 368-369, Apr. 1987. https://doi.org/10.1049/el:19870270
  7. W. S. T. Rowe and R. B. Waterhouse, "Investigation into the performance of proximity coupled stacked patches," IEEE Trans. Antennas and Propaga., vol. 54, no. 6, pp. 1693-1698, Jun. 2006. https://doi.org/10.1109/TAP.2006.875462
  8. K.-H. Lee, E.-H. Kwak, and B.-G. Kim, "Characteristics of proximity coupled microstrip patch antenna for various thicknesses of antenna substrate," 2013 IEEK Conf., p. 85, Seoul, Korea, May 2013.
  9. C. A. Balanis, Antenna Theory, 3rd ed., NY: John Wiley & Sons, 2005.

Cited by

  1. Bandwidth Enhancement for a Proximity Coupled Microstrip patch Antenna with an Impedance Matching Network vol.52, pp.2, 2015, https://doi.org/10.5573/ieie.2015.52.2.055