• Title/Summary/Keyword: edge loss

Search Result 367, Processing Time 0.028 seconds

Experimental Study on Edge Flame Instabilities in Solid Rocket Combustion (고체로켓연소에서 에지화염 불안정성에 대한 실험적 연구)

  • Hwang Dong-Jin;Park Jeong;Kim Jeong-Soo;Kim Sung-Cho;Kim Tae-Kwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.279-282
    • /
    • 2006
  • Experiments in low strain rate methane-air counterflow diffusion flames diluted with $CO_2$ have been conducted to investigate the flame extinction behavior and edge flame oscillation The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. Onset conditions of the edge flame oscillation and the relevant modes are also provided with global strain rate. It is observed that flame length is intimately relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations are categorized into three: a growing-, a decaying-, and a harmonic-oscillation mode.

  • PDF

Characteristics of Non-premixed Edge Flames in a Counterflow Slot Burner

  • Cha, Min-Suk;Ronney, Paul D.
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.4
    • /
    • pp.33-40
    • /
    • 2005
  • The propagation rates of advancing and retreating non-premixed edge flames in a slot-jet counterflow were measured as a function of strain rate for varying jet spacing, mixture strength, stoichiometric mixture fractions $(Z_{st})$ and Lewis numbers (Le). Methane and propane fuels were tested and nitrogen and carbon dioxide were used as inerts. As results, we could identify igniting fronts, retreating fronts, two total extinction limits, and short-length edge flames. A burner separation affected to a low extinction limit only. Regimes for advancing and retreating edges together with total extinction were mapped in terms of normalized flame thickness and heat loss factor for $CH_4/O_2/N_2$ mixtures. Edge flames for $Z_{st}$ > 0.5 behaved like a stronger mixture while for $Z_{st}$ < 0.5 showed deteriorated feature, because of relative locations of a non-premixed flame and intermediate species such as CO and $H_2$. Furthermore, due to the relative importance of heat loss, propagating speeds of edge flames were significantly enhanced in $CH_4/O_2/CO_2$ mixtures (Le < 1) demonstrating increasing stability limits. However $C_3H_8/O_2/N_2$ mixtures (Le > 1) showed opposite result.

  • PDF

Influence of tape′s arrangements on AC Loss Characteristics in a 3-conductor (테이프 배열이 3본-도체의 교류손실 특성에 미치는 영향)

  • 조영호;허대행;류경우;최병주;황시돌
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.260-262
    • /
    • 2003
  • AC loss is an important issue in the design of high-T$_{c}$, superconducting power cables which consist of a number of Bi-2223 tapes wound on a cylindrical former. In this paper, the ac loss characteristics in the 3-conductor have investigated experimentally. The loss test results indicate that the ac loss is not related to the arrangement of Bi-2223 tapes, contact position and applied frequency. The measured losses in face-to-face arrangement are larger than those in edge-to-edge arrangement. The measured losses in the 3-conductor also agree well with the sum of the transport losses measured in each Bi-2223 tape.e.

  • PDF

Effects of the Low Reynolds Number on the Loss Characteristics in a Transonic Axial Compressor

  • Choi, Min-Suk;Oh, Seong-Hwan;Ko, Han-Young;Baek, Je-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.202-212
    • /
    • 2008
  • A three-dimensional computation was conducted to understand effects of the low Reynolds number on the loss characteristics in a transonic axial compressor, Rotor67. As a gas turbine becomes smaller in size and it is operated at high altitude, the operating condition frequently lies at low Reynolds number. It is generally known that wall boundary layers are thickened and a large separation occurs on the blade surface in axial turbomachinery as the Reynolds number decreases. In this study, it was found that the large viscosity did not affect on the bow shock at the leading edge but significantly did on the location and the intensity of the passage shock. The passage shock moved upstream towards leading edge and its intensity decreased at the low Reynolds number. This change had large effects on the performance as well as the internal flows such as the pressure distribution on the blade surface, tip leakage flow and separation. The total pressure rise and the adiabatic efficiency decreased about 3% individually at the same normalized mass flow rate at the low Reynolds number. In order to analyze this performance drop caused by the low Reynolds number, the total pressure loss was scrutinized through major loss categories such as profile loss, tip leakage loss, endwall loss and shock loss.

  • PDF

Numerical simulation and investigation of jet impingement cooling heat transfer for the rotor blade

  • Peiravi, Amin;Bozorg, Mohsen Agha Seyyed Mirza;Mostofizadeh, Alireza
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.537-551
    • /
    • 2020
  • Investigation of leading edge impingement cooling for first stage rotor blades in an aero-engine turbine, its effect on rotor temperature and trailing edge wake loss have been undertaken in this study. The rotor is modeled with the nozzle for attaining a more accurate simulation. The rotor blade is hollowed in order for the coolant to move inside. Also, plenum with the 15 jet nozzles are placed in it. The plenum is fed by compressed fresh air at the rotor hub. Engine operational and real condition is exerted as boundary condition. Rotor is inspected in two states: in existence of cooling technique and non-cooling state. Three-dimensional compressible and steady solutions of RANS equations with SST K-ω turbulent model has been performed for this numerical simulation. The results show that leading edge is one of the most critical regions because of stagnation formation in those areas. Another high temperature region is rotor blade tip for existence of tip leakage in this area and jet impingement cooling can effectively cover these regions. The rotation impact of the jet velocity from hub to tip caused a tendency in coolant streamlines to move toward the rotor blade tip. In addition, by discharging used coolant air from the trailing edge and ejecting it to the turbines main flow by means of the slot in trailing edge, which could reduce the trailing edge wake loss and a total decrease in the blade cooling loss penalty.

A Study on Flame Extinction and Edge Flame Oscillation in Counterflow Diffusion Flame (대향류확산화염에서 화염소화와 에지화염진동에 관한 연구)

  • Park, Dae-Geun;Yun, Jin-Han;Park, Jeong;Keel, Sang-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.64-76
    • /
    • 2009
  • Experimental and numerical studies are conducted on the characteristics of flame extinction and edge flame oscillation in counterflow diffusion flames. The characteristics of flame extinction and edge flame oscillation are well described varying burner diameter, separation distance between two burners, global strain rate, and velocity ratio. It is verified numerically and experimentally that radial conduction heat loss significantly contributes to flame extinction and edge flame oscillation at low strain rate flames in zero- and micro-gravity. It is also shown that for appropriately small burner diameters flame extinction modes are grouped into four and these are significantly attributed to excessive radial conduction heat loss. The edge flame oscillation can be characterized well by one curve with Strouhal number and Peclet number.

Transmission Line Model for an Edge-Coupled Patch Antenna

  • Saksiri, Wiset;Chongcheawchamnan, Mitchai;Krairiksh, Monai
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.723-728
    • /
    • 2008
  • In this paper, a simple transmission line model for an edge-coupled patch antenna is presented. The coupled section is modeled with a lump network which represents the mutual admittance between patches and from patch to ground. Theoretical analysis of two edge-coupled patch antenna models are compared by simulation and experiment in antennas designed to operate at the 2 GHz band. The proposed model predicts the return loss of the antenna accurately.

  • PDF

Effect of Outer Edge Flame on Flame Extinction in Counterflow Diffusion Flames (대향류 확산화염에서 에지화염이 화염소화에 미치는 영향)

  • Chung, Yong-Ho;Park, Dae-Geun;Park, Jeong;Yun, Jin-Han;Kwon, Oh-Boong;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.181-188
    • /
    • 2012
  • The present study on nitrogen-diluted non-premixed counterflow flames with finite burner diameters experimentally investigates the important role of the outer edge flame in flame extinction. Flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of the burner diameter, burner gap, and velocity ratio are explored. There exists a critical nitrogen mole fraction beyond which the flame cannot be sustained, and also the curves of the critical nitrogen mole fraction versus the global strain rate have C-shapes in terms of burner diameter, burner gap, and velocity ratio. In flames with sufficiently high strain rates, the curves of the critical nitrogen mole fractions versus global strain rate collapse into one curve, and the flames can have the 1-D flame response of typical diffusion flames. Three flame extinction modes are identified: flame extinctions through the shrinkage of the outer edge flame with and without an oscillation of the outer edge flame prior to the extinction and flame extinction through a flame hole at the flame center. The measured flame surface temperature and a numerical evaluation of the fractional contribution of each term in the energy equation show that the radial conductive heat loss at the flame edge destabilizes the outer edge flame, and the conductive and convection heat addition to the outer edge from the trailing diffusion flame stabilizes the outer edge flame. The radial conductive heat loss at the flame edge is the dominant extinction mechanism acting through the shrinkage of the outer edge flame.

A Strategy for the Simulation of Adhesive Layers

  • Ochsner, A.;Mishuris, G.;Gracio, J.
    • Journal of Adhesion and Interface
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • The high accurate simulation of very thin glue layers based on the finite element method is still connected to many problems which result from the necessity to construct a complicated mesh of essentially different sizes of elements. This can lead to a loss of accuracy, unstable calculations and even loss of convergence. However, the implementation of special transmission elements along the glue ling and special edge-elements in the near-edge region would lead to a dramatic decrease of number of finite elements in the mesh and thus, prevent unsatisfactory phenomena in numerical analysis and extensive computation time. The theoretical basis for such special elements is the knowledge about appropriate transmission conditions and the edge effects near the free boundary of the adhesive layer. Therefore, recently proposed so-called non-classical transmission conditions and the behavior near the free edge are investigated in the context of the single-lap tensile-shear test of adhesive technology.

  • PDF

Effects of Burner Distance on Flame Characteristics at Low Strain Rate Counterflow Edge Flames (저 신장율 대향류 확산화염에서 화염 특성에 관한 버너 간격 효과)

  • Yun, Jin-Han;Keel, Sang-In;Hwang, Dong-Jin;Choi, Yun-Jin;Ryu, Jung-In;Park, Jeong
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.26-36
    • /
    • 2008
  • Experimental study is conducted to identify the existence of a shrinking flame disk and to clarify its flame characteristics through the inspection of critical mole fraction at flame extinction and edge flame oscillation at low strain rate flames. Experiments are made as varying global strain rate, velocity ratio, and burner distance. The transition from a shrinking flame disk to a flame hole is verified through gradient measurements of maximum flame temperature. The evidence of edge flame oscillation in flame disk is also provided through numerical simulation in microgravity. It is found at low strain rate flame disks in normal gravity that buoyancy effects are importantly contributing to lateral heat loss to burner rim, and is proven through critical mole fraction at flame extinction, edge flame oscillation, and measurements of flame temperature gradient along flame disk surface.

  • PDF