• Title/Summary/Keyword: edge fringing field effect

Search Result 5, Processing Time 0.02 seconds

Programming Characteristics on Three-Dimensional NAND Flash Structure Using Edge Fringing Field Effect

  • Yang, Hyung Jun;Song, Yun-Heub
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.537-542
    • /
    • 2014
  • The three-dimensional (3-D) NAND flash structure with fully charge storage using edge fringing field effect is presented, and its programming characteristic is evaluated. We successfully confirmed that this structure using fringing field effect provides good program characteristics showing sufficient threshold voltage ($V_T$) margin by technology computer-aided design (TCAD) simulation. From the simulation results, we expect that program speed characteristics of proposed structure have competitive compared to other 3D NAND flash structure. Moreover, it is estimated that this structural feature using edge fringing field effect gives better design scalability compared to the conventional 3D NAND flash structures by scaling of the hole size for the vertical channel. As a result, the proposed structure is one of the candidates of Terabit 3D vertical NAND flash cell with lower bit cost and design scalability.

A Study on Characteristic Impedance and Electromagnetic Distribution by the Edge Effect of Printed Cicuit Board Line (PCB선로의 끝단효과에 의한 특성임피던스 및 전자계분포에 관한 연구)

  • 장인범;박건호;이수길;김성렬;김용주;김영천;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.323-325
    • /
    • 1997
  • Conventionally it is asummed that the microstrip line conductor has a rectangular cross-section. but the additive and substactive processes used to create conductors for PCBs produce a conductor of approximately Trapezoidal cross-section. For wide Strip line, the thickness and edge effect will be small since most of capacitance is parallel plate rather than fringing and we can ignore the cross-section. For narrow strip lines, the edge effect become immportant. So in this paper, we measure the chracteristic impedance of microstripline by Vector Analyzer and simulate the electromagnetic field of microstripline using finite element method with edge angle.

  • PDF

Near electromagnetic field analysis of HTS microstrip patch antenna (고온초전도 마이크로스트립 패치 안테나의 근거리 전자장 해석)

  • 정동철;허원일;김민기;한태희;한병성
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.783-788
    • /
    • 1996
  • In this paper, the high-$T_c$ , superconductor (HTS) microstrip patch antenna which is directly coupled to a microstrip transmission line is designed and the numerical solution which evaluate near electromagnetic field of HTS antenna is presented. This solution uses the interpolation function with the vector edge triangular element. The advantage of this element is the elimination of spurious solutions attributed to the lack of enforcement of the divergence condition. The results of this method have a good agreement with $TM_10$ mode in HTS microstrip patch antenna and show that the computation of resonant length considering the fringing capacitance effect at radiating edge are proper.

  • PDF

A Study on the Evaluation Method of Shielding Effectiveness using NFS in Near-Field Tests (근거리장에서 NFS를 사용한 차폐효율 평가방법에 관한 연구)

  • Park, Jungyeol;Song, Inchae;Kim, Boo-Gyoun;Kim, Eun-Ha
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.76-82
    • /
    • 2016
  • In this paper, we evaluated shielding effectiveness (SE) of carbon nanotube (CNT) film using near field scanning (NFS) in near field analysis. We adopted CNT film with deposit carbon density of 5% and thickness of 1mm for evaluation of shielding characteristic. Using a test coupon analogized to an actual IC package, we measured SE according to measuring position and SE according to distances between the CNT film and the test coupon. As a result, the measured SE in the near field varied with frequency. Especially, the measured electric field SE in the center of the test coupon is better than that of the measured edge point of the test coupon where it is affected by fringing effect. The results show that the measured SE in the near field is affected not only by frequency but also by measurement environment such as position and height of the probe and height of shielding film. In conclusion, we should choose proper methods for SE measurement considering interference distance in the electronic control system because there is little correlation between the proposed evaluation method in the near field and ASTM D 4935-10.

Performance and Variation-Immunity Benefits of Segmented-Channel MOSFETs (SegFETs) Using HfO2 or SiO2 Trench Isolation

  • Nam, Hyohyun;Park, Seulki;Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.427-435
    • /
    • 2014
  • Segmented-channel MOSFETs (SegFETs) can achieve both good performance and variation robustness through the use of $HfO_2$ (a high-k material) to create the shallow trench isolation (STI) region and the very shallow trench isolation (VSTI) region in them. SegFETs with both an HTI region and a VSTI region (i.e., the STI region is filled with $HfO_2$, and the VSTI region is filled with $SiO_2$) can meet the device specifications for high-performance (HP) applications, whereas SegFETs with both an STI region and a VHTI region (i.e., the VSTI region is filled with $HfO_2$, and the STI region is filled with $SiO_2$) are best suited to low-standby power applications. AC analysis shows that the total capacitance of the gate ($C_{gg}$) is strongly affected by the materials in the STI and VSTI regions because of the fringing electric-field effect. This implies that the highest $C_{gg}$ value can be obtained in an HTI/VHTI SegFET. Lastly, the three-dimensional TCAD simulation results with three different random variation sources [e.g., line-edge roughness (LER), random dopant fluctuation (RDF), and work-function variation (WFV)] show that there is no significant dependence on the materials used in the STI or VSTI regions, because of the predominance of the WFV.