• Title/Summary/Keyword: edge descriptor

Search Result 57, Processing Time 0.019 seconds

Context Extraction and Analysis of Video Life Log Using Bayesian Network (베이지안 네트워크를 이용한 동영상 기반 라이프 로그의 분석 및 의미정보 추출)

  • Jung, Tae-Min;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.414-418
    • /
    • 2010
  • 최근 라이프 로그의 수집과 관리에 관련된 연구가 많이 진행 중에 있다. 또 핸드폰 카메라, 디지털 카메라, 캠코더 등의 발전으로 자신의 일상생활을 비디오로 저장하고, 인터넷을 통해 공유하는 사람도 증가하고 있다. 비디오 데이터는 많은 정보를 포함하고 있는 라이프 로그의 한 예로. 동영상의 촬영 및 수집이 활발해짐에 따라 동영상의 메타정보를 생성하고, 이를 이용해 동영상 검색과 관리에 이용하려는 연구들이 진행 중이다. 본 논문에서는 라이프 로그를 수집하고 수집된 동영상과 라이프 로그를 이용하여 의미정보를 추출하는 시스템을 제안한다. 의미정보란 사용자의 행동을 나타내는 정보로써 컴퓨터 사용, 식사, 집안일, 이동, 외출, 독서, 휴식, 일, 기타로 9가지의 의미정보를 추출한다. 제안하는 방법은 사용자로부터 GPS, 가속도센서, 캠코더를 이용해 실제 데이터를 수집하고, 전처리 과정을 통하여 특징을 추출한다. 이때 추출될 특징은 위치정보와 사용자의 상태정보 그리고 영상처리릍 통한 RGB와 HSL 색공간의 요소와 MPEG-7의 EHD(Edge Histogram Descriptor). CLD(Color Layout Descriptor)이다. 추출된 특징으로부터 사람 행동과 같은 불안정한 상황에서 강점을 보이는 확률모델 네트워크인 베이지안 네트워크를 이용하여 의미정보를 추출한다. 제안하는 방법의 유용성을 보이기 위해 실제 데이터를 수집하고 추론하고 10-Fold Cross-validation을 이용하여 데이터를 검증한다.

  • PDF

Image Retrieval Using a Composite of MPEG-7 Visual Descriptors (MPEG-7 디스크립터들의 조합을 이용한 영상 검색)

  • 강희범;원치선
    • Journal of Broadcast Engineering
    • /
    • v.8 no.1
    • /
    • pp.91-100
    • /
    • 2003
  • In this paper, to improve the retrieval Performance, an efficient combination of the MPEG-7 visual descriptors, such as the edge histogram descriptor (EHD), the color layout descriptor (CLD), and the homogeneous texture descriptor (HTD), is proposed in the framework of the relevance feedback approach. The EHD represents spatial distribution of edges in local image regions and it is considered as an important feature to represent the content of the image. The CLD specifies spatial distribution of colors and is widely used in image retrieval due to its simplicity and fast operation speed. The HTD describes precise statistical distribution of the image texture. Both the feature vector for the query image and the weighting factors among the combined descriptors are adaptively determined during the relevance feedback. Experimental results show that the proposed method improves the retrieval performance significantly tot natural images.

Image Identifier based on Local Feature's Histogram and Acceleration Technique using GPU (지역 특징 히스토그램 기반 영상식별자와 GPU 가속화)

  • Jeon, Hyeok-June;Seo, Yong-Seok;Hwang, Chi-Jung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.9
    • /
    • pp.889-897
    • /
    • 2010
  • Recently, a cutting-edge large-scale image database system has demanded these attributes: search with alarming speed, performs with high accuracy, archives efficiently and much more. An image identifier (descriptor) is for measuring the similarity of two images which plays an important role in this system. The extraction method of an image identifier can be roughly classified into two methods: a local and global method. In this paper, the proposed image identifier, LFH(Local Feature's Histogram), is obtained by a histogram of robust and distinctive local descriptors (features) constrained by a district sub-division of a local region. Furthermore, LFH has not only the properties of a local and global descriptor, but also can perform calculations at a magnificent clip to determine distance with pinpoint accuracy. Additionally, we suggested a way to extract LFH via GPU (OpenGL and GLSL). In this experiment, we have compared the LFH with SIFT (local method) and EHD (global method) via storage capacity, extraction and retrieval time along with accuracy.

Post-Processing for JPEG-Coded Image Deblocking via Sparse Representation and Adaptive Residual Threshold

  • Wang, Liping;Zhou, Xiao;Wang, Chengyou;Jiang, Baochen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1700-1721
    • /
    • 2017
  • The problem of blocking artifacts is very common in block-based image and video compression, especially at very low bit rates. In this paper, we propose a post-processing method for JPEG-coded image deblocking via sparse representation and adaptive residual threshold. This method includes three steps. First, we obtain the dictionary by online dictionary learning and the compressed images. The dictionary is then modified by the histogram of oriented gradient (HOG) feature descriptor and K-means cluster. Second, an adaptive residual threshold for orthogonal matching pursuit (OMP) is proposed and used for sparse coding by combining blind image blocking assessment. At last, to take advantage of human visual system (HVS), the edge regions of the obtained deblocked image can be further modified by the edge regions of the compressed image. The experimental results show that our proposed method can keep the image more texture and edge information while reducing the image blocking artifacts.

Pan-sharpening Effect in Spatial Feature Extraction

  • Han, Dong-Yeob;Lee, Hyo-Seong
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.359-367
    • /
    • 2011
  • A suitable pan-sharpening method has to be chosen with respect to the used spectral characteristic of the multispectral bands and the intended application. The research on pan-sharpening algorithm in improving the accuracy of image classification has been reported. For a classification, preserving the spectral information is important. Other applications such as road detection depend on a sharp and detailed display of the scene. Various criteria applied to scenes with different characteristics should be used to compare the pan-sharpening methods. The pan-sharpening methods in our research comprise rather common techniques like Brovey, IHS(Intensity Hue Saturation) transform, and PCA(Principal Component Analysis), and more complex approaches, including wavelet transformation. The extraction of matching pairs was performed through SIFT descriptor and Canny edge detector. The experiments showed that pan-sharpening techniques for spatial enhancement were effective for extracting point and linear features. As a result of the validation it clearly emphasized that a suitable pan-sharpening method has to be chosen with respect to the used spectral characteristic of the multispectral bands and the intended application. In future it is necessary to design hybrid pan-sharpening for the updating of features and land-use class of a map.

The Extraction of the Edge Histogram using Wavelet Coefficients in the Wavelet Domain (웨이블릿 영역에서의 웨이블릿 계수들을 이용한 에지 히스토그램 추출 기법 연구)

  • Song, Jin-Ho;Eom, Min-Young;Choe, Yoon-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.137-144
    • /
    • 2005
  • In this paper, the extraction method of the edge histogram directly using wavelet coefficients in the wavelet domain for JPEG2000 images is proposed. MPEG-7 Edge Histogram Descriptor(EHD) extracts edge histogram in the spacial domain. This algorithm has much multiplication and addition for the edge extraction because it needs the decoding processing. However because the proposed algorithm extracts the edge histogram in the wavelet domain, it doesn't need the decoding processing and it decreases multiplication and addition. The Discrete Wavelet Transform(DWT) is a standard transform in JPEG2000. The proposed algorithm uses Le Gall 5/3 filter in JPEG2000 and odd coefficients in LH2 and HL2 sub-band. The edge direction can be decided to use rate of HL2 and LH2 odd coefficients. According to experiments, there is no difference of the efficiency between EHD and the proposed algorithm And the proposed algorithm is much better than EHD for multiplication and addition in the edge extraction of images.

Real-time Shot Boundary Detection Based On Digital Video Camera Using The MPEG-7 Descriptor (MPEG-7 기술자를 이용한 디지털 비디오 카메라 기반 실시간 샷 경계 검출)

  • 심상흔;양승지;윤정현;노용만
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.193-198
    • /
    • 2001
  • 최근 대용량 디지털 비디오의 효율적인 이용 및 관리를 위한 데이터 베이스 구축이 절실히 요구되고 있다. 이를 위해서 , 디지털 비디오의 내용 기반 요약이 필요하며, 선행 기술로서 비디오의 샷 경계 검출이 이루어져야 한다. 기존의 샷 경계 검출 방법들은 압축 파일로 저장된 비디오 데이터에 대해 샷 경계 검출을 수행한다. 이러한 기존 방법과 달리, 본 논문에서는 디지털 비디오 카메라로부터 비디오 데이터를 얻어 저장하면서, 실시간으로 샷 경계 검출을 수행하고자 한다. 그리고, 실시간 샷 경계 검출에 있어서 본 논문은 MPEG-7의 Homogeneous Texture와 Edge Histogram 기술자를 적용하여 추출된 각 비디오 프레임의 질감과 에지 정보를 이용한다 이 방법은 비디오의 샷 경계 검출에 있어서 시간적으로 기존 방법들보다 효율적이고, 내용 기반 검색에 유용하다.

  • PDF

A new approach for content-based video retrieval

  • Kim, Nac-Woo;Lee, Byung-Tak;Koh, Jai-Sang;Song, Ho-Young
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.24-28
    • /
    • 2008
  • In this paper, we propose a new approach for content-based video retrieval using non-parametric based motion classification in the shot-based video indexing structure. Our system proposed in this paper has supported the real-time video retrieval using spatio-temporal feature comparison by measuring the similarity between visual features and between motion features, respectively, after extracting representative frame and non-parametric motion information from shot-based video clips segmented by scene change detection method. The extraction of non-parametric based motion features, after the normalized motion vectors are created from an MPEG-compressed stream, is effectively fulfilled by discretizing each normalized motion vector into various angle bins, and by considering the mean, variance, and direction of motion vectors in these bins. To obtain visual feature in representative frame, we use the edge-based spatial descriptor. Experimental results show that our approach is superior to conventional methods with regard to the performance for video indexing and retrieval.

Medical Image Classification and Retrieval using MPEG-7 Visual Descriptors and Multi-Class SVM(Support Vector Machine) (MPEG-7 시각 기술자와 멀티 클래스 SVM을 이용한 의료 영상 분류와 검색)

  • Shim, Jeong-Hee;Ko, Byoung-Chul;Nam, Jae-Yeal
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.135-138
    • /
    • 2008
  • 본 논문은 의료 영상에 대한 효과적인 분류와 검색을 위한 알고리즘을 제안한다. 영상 분류와 검색을 위해서 MPEG-7 표준 기술자인 색 구조 기술자와 경계선 히스토그램 기술자를 사용해 영상들에 대한 특징 값을 추출한다. 이렇게 구해진 특징 값들을 의료 영상의 분류와 검색에 적용해 본 결과 비교적 낮은 성능을 보여줌을 확인하고 앞서 구해진 특징 값들을 교사 학습 방법인 SVM(Support Vector Machine)과 비교사 학습 방법인 FCM(Fuzzy C-means Clustering)에 적용시켰다. 기존 연구에서는 SVM과 FCM의 통합으로 의료 영상에 대한 분류와 검색을 시행하였지만 본 논문에서 실험한 결과 SVM과 MPEG-7 시각 기술자 중에 하나인 EHD(Edge Histogram Descriptor)를 가중치 선형 결합하여 실험한 결과가 더 정확한 분류와 높은 검색 성능을 나타냄을 확인하였다.

Medical Image Automatic Annotation Using Multi-class SVM and Annotation Code Array (다중 클래스 SVM과 주석 코드 배열을 이용한 의료 영상 자동 주석 생성)

  • Park, Ki-Hee;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.281-288
    • /
    • 2009
  • This paper proposes a novel algorithm for the efficient classification and annotation of medical images, especially X-ray images. Since X-ray images have a bright foreground against a dark background, we need to extract the different visual descriptors compare with general nature images. In this paper, a Color Structure Descriptor (CSD) based on Harris Corner Detector is only extracted from salient points, and an Edge Histogram Descriptor (EHD) used for a textual feature of image. These two feature vectors are then applied to a multi-class Support Vector Machine (SVM), respectively, to classify images into one of 20 categories. Finally, an image has the Annotation Code Array based on the pre-defined hierarchical relations of categories and priority code order, which is given the several optimal keywords by the Annotation Code Array. Our experiments show that our annotation results have better annotation performance when compared to other method.