• Title/Summary/Keyword: edge connectivity

Search Result 79, Processing Time 0.025 seconds

A study on image region analysis and image enhancement using detail descriptor (디테일 디스크립터를 이용한 이미지 영역 분석과 개선에 관한 연구)

  • Lim, Jae Sung;Jeong, Young-Tak;Lee, Ji-Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.728-735
    • /
    • 2017
  • With the proliferation of digital devices, the devices have generated considerable additive white Gaussian noise while acquiring digital images. The most well-known denoising methods focused on eliminating the noise, so detailed components that include image information were removed proportionally while eliminating the image noise. The proposed algorithm provides a method that preserves the details and effectively removes the noise. In this proposed method, the goal is to separate meaningful detail information in image noise environment using the edge strength and edge connectivity. Consequently, even as the noise level increases, it shows denoising results better than the other benchmark methods because proposed method extracts the connected detail component information. In addition, the proposed method effectively eliminated the noise for various noise levels; compared to the benchmark algorithms, the proposed algorithm shows a highly structural similarity index(SSIM) value and peak signal-to-noise ratio(PSNR) value, respectively. As shown the result of high SSIMs, it was confirmed that the SSIMs of the denoising results includes a human visual system(HVS).

Efficient Mining of Frequent Subgraph with Connectivity Constraint

  • Moon, Hyun-S.;Lee, Kwang-H.;Lee, Do-Heon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.267-271
    • /
    • 2005
  • The goal of data mining is to extract new and useful knowledge from large scale datasets. As the amount of available data grows explosively, it became vitally important to develop faster data mining algorithms for various types of data. Recently, an interest in developing data mining algorithms that operate on graphs has been increased. Especially, mining frequent patterns from structured data such as graphs has been concerned by many research groups. A graph is a highly adaptable representation scheme that used in many domains including chemistry, bioinformatics and physics. For example, the chemical structure of a given substance can be modelled by an undirected labelled graph in which each node corresponds to an atom and each edge corresponds to a chemical bond between atoms. Internet can also be modelled as a directed graph in which each node corresponds to an web site and each edge corresponds to a hypertext link between web sites. Notably in bioinformatics area, various kinds of newly discovered data such as gene regulation networks or protein interaction networks could be modelled as graphs. There have been a number of attempts to find useful knowledge from these graph structured data. One of the most powerful analysis tool for graph structured data is frequent subgraph analysis. Recurring patterns in graph data can provide incomparable insights into that graph data. However, to find recurring subgraphs is extremely expensive in computational side. At the core of the problem, there are two computationally challenging problems. 1) Subgraph isomorphism and 2) Enumeration of subgraphs. Problems related to the former are subgraph isomorphism problem (Is graph A contains graph B?) and graph isomorphism problem(Are two graphs A and B the same or not?). Even these simplified versions of the subgraph mining problem are known to be NP-complete or Polymorphism-complete and no polynomial time algorithm has been existed so far. The later is also a difficult problem. We should generate all of 2$^n$ subgraphs if there is no constraint where n is the number of vertices of the input graph. In order to find frequent subgraphs from larger graph database, it is essential to give appropriate constraint to the subgraphs to find. Most of the current approaches are focus on the frequencies of a subgraph: the higher the frequency of a graph is, the more attentions should be given to that graph. Recently, several algorithms which use level by level approaches to find frequent subgraphs have been developed. Some of the recently emerging applications suggest that other constraints such as connectivity also could be useful in mining subgraphs : more strongly connected parts of a graph are more informative. If we restrict the set of subgraphs to mine to more strongly connected parts, its computational complexity could be decreased significantly. In this paper, we present an efficient algorithm to mine frequent subgraphs that are more strongly connected. Experimental study shows that the algorithm is scaling to larger graphs which have more than ten thousand vertices.

  • PDF

Ontology-based Semantic Matchmaking for Service-oriented Mission Operation (서비스 지향 임무 수행을 위한 온톨로지 기반 시맨틱 매칭 방법)

  • Song, Seheon;Lee, SangIl;Park, JaeHyun
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.238-245
    • /
    • 2016
  • There are technological, operational and environmental constraints at tactical edge, which are disconnected operation, intermittent connectivity, and limited bandwidth (DIL), size, weight and power (SWaP) limitations, ad-hoc and mobile network, and so on. To overcome these limitations and constraints, we use service-oriented architecture (SOA) based technologies. Moreover, the operation environment is highly dynamic: requirements change in response to the emerging situation, and the availability of resources needs to be updated constantly due to the factors such as technical failures. In order to use appropriate resources at the right time according to the mission, it needs to find the best resources. In this context, we identify ontology-based mission service model including mission, task, service, and resource, and develop capability-based matching in tactical edge environment. The goal of this paper is to propose a capability-based semantic matching for dynamic resource allocation. The contributions of this paper are i) military domain ontologies ii) semantic matching using ontology relationship; and (iii) the capability-based matching for the mission service model.

A Dynamic Resource Allocation Method in Tactical Network Environments Based on Graph Clustering (전술 네트워크 환경에서 그래프 클러스터링 방법을 이용한 동적 자원 할당 방법)

  • Kim, MinHyeop;Ko, In-Young;Lee, Choon-Woo
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.8
    • /
    • pp.569-579
    • /
    • 2014
  • In a tactical-edge environment, where multiple weapon resources are coordinated together via services, it is essential to make an efficient binding between an abstract service and a resource that are needed to execute composite services for accomplishing a given mission. However, the tactical network that is used in military operation has low bandwidth and a high rate of packet loss. Therefore, communication overhead between services must be minimized to execute composite services in a stable manner in the tactical network. In addition, a tactical-edge environment changes dynamically, and it affects the connectivity and bandwidth of the tactical network. To deal with these characteristics of the tactical network we propose two service-resource reallocation methods which minimize the communication overhead between service gateways and effectively manage neutralization of gateways during distributed service coordination. We compared the effectiveness of these two - methods in terms of total communication overhead between service gateways and resource-allocation similarity between the initial resource allocation and the reallocation result.

Histogram-based road border line extractor for road extraction from satellite imagery (위성영상에서 도로 추출을 위한 히스토그램 기반 경계선 추출자)

  • Lee, Dong-Hoon;Kim, Jong-Hwa;Choi, Heung-Moon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.28-34
    • /
    • 2007
  • A histogram-based road border line extractor is proposed for an efficient road extraction from the high-resolution satellite imagery. The road border lines are extracted from an edge strength map based on the directional histogram difference between the road and the non-road region. The straight and the curved roads are extracted hierarchically from the edge strength map of the original image and the segmented road cluster images, and the road network is constructed based on the connectivity. Unlike the conventional approaches based on the spectral similarity, the proposed road extraction method is more robust to noise because it extracts roads based on the histogram, and is able to extract both the location and the width of roads. In addition, the proposed method can extract roads with various spectral characteristics by identifying the road clusters automatically. Experimental results on IKONOS multi-spectral satellite imagery with high spatial resolution show that the proposed method can extract the straight and the curved roads as well as the accurate road border lines.

Implementation of Mission Service Model and Development Tool for Effective Mission Operation in Military Environment (전장공간의 효율적 임무수행을 위한 임무서비스 모델 및 개발도구 구현)

  • Song, Seheon;Byun, Kohun;Lee, Sangil;Park, JaeHyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.6
    • /
    • pp.285-292
    • /
    • 2017
  • There are technological, operational and environmental constraints at tactical edge, which are disconnected operation, intermittent connectivity, and limited bandwidth (DIL), size, weight and power (SWaP) limitations, ad-hoc and mobile network, and so on. To overcome these limitations and constraints, we use service-oriented architecture (SOA) based technologies. In our research, we propose a hierarchical mission service model that supports service-oriented mission planning and execution in order for a commander to operate various SW required for mission in battlefield environment. We will also implement development tools that utilize the workflow technology and semantic capability-based recommendation and apply them to combat mission scenarios to demonstrate effectiveness.

An Implementation of $5\times{5}$ CNN Hardware and Pre.Post Processor ($5\times{5}$ CNN 하드웨어 및 전.후 처리기 구현)

  • 김승수;정금섭;전흥우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.416-419
    • /
    • 2003
  • The cellular neural networks have the circuit structure that differs from the form of general neural network. It consists of an array of the same cell which is a simple processing element, and each of the cells has local connectivity and space invariant template property. In this paper, time-multiplex image processing technique is applied for processing large images using small size CNN cell block, and we simulate the edge detection of a large image using the simulator implemented with a c program and matlab model. A 5$\times$5 CNN hardware and pre post processor is also implemented and is under test.

  • PDF

An Arrangement Technique for Fine Regular Triangle Grid of Network Dome by Using Harmony Search Algorithm (화음탐색 알고리즘을 이용한 네트워크 돔의 정삼각형 격자 조절기법)

  • Shon, Su-Deok;Jo, Hye-Won;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.87-94
    • /
    • 2015
  • This paper aimed at modeling a fine triangular grid for network dome by using Harmony Search (HS) algorithm. For this purpose, an optimization process to find a fine regular triangular mesh on the curved surface was proposed and the analysis program was developed. An objective function was consist of areas and edge's length of each triangular and its standard deviations, and design variables were subject to the upper and lower boundary which was calculated on the nodal connectivity. Triangular network dome model, which was initially consist of randomly irregular triangular mesh, was selected for the target example and the numerical result was analyzed in accordance with the HS parameters. From the analysis results of adopted model, the fitness function has been converged and the optimized triangular grid could be obtained from the initially distorted network dome example.

Localization Method in Wireless Sensor Networks using Fuzzy Modeling and Genetic Algorithm (퍼지 모델링과 유전자 알고리즘을 이용한 무선 센서 네트워크에서 위치추정)

  • Yun, Suk-Hyun;Lee, Jae-Hun;Chung, Woo-Yong;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.530-536
    • /
    • 2008
  • Localization is one of the fundamental problems in wireless sensor networks (WSNs) that forms the basis for many location-aware applications. Localization in WSNs is to determine the position of node based on the known positions of several nodes. Most of previous localization method use triangulation or multilateration based on the angle of arrival (AOA) or distance measurements. In this paper, we propose an enhanced centroid localization method based on edge weights of adjacent nodes using fuzzy modeling and genetic algorithm when node connectivities are known. The simulation results shows that our proposed centroid method is more accurate than the simple centroid method using connectivity only.

A Design of a Cellular Neural Network for the Real Image Processing (실영상처리를 위한 셀룰러 신경망 설계)

  • Kim Seung-Soo;Jeon Heung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.283-290
    • /
    • 2006
  • The cellular neural networks have the structure that consists of an array of the same cell which is a simple processing element, and each of the cells has local connectivity and space invariant template properties. So, it has a very suitable structure for the hardware implementation. But, it is impossible to have a one-to-one mapping between the CNN hardware processors and the pixels of the practical large image. In this paper, a $5{\times}5$ CNN hardware processor with pipeline input and output that can be applied to the time-multiplexing processing scheme, which processes the large image with a small CNN cell block, is designed. the operation of the implemented $5{\times}5$ CNN hardware processor is verified from the edge detection and the shadow detection experimentations.