• 제목/요약/키워드: edge 추출

검색결과 850건 처리시간 0.029초

저전력 장치를 위한 자원 효율적 객체 검출기 (Resource-Efficient Object Detector for Low-Power Devices)

  • 악세이 쿠마 샤마;김경기
    • 반도체공학회 논문지
    • /
    • 제2권1호
    • /
    • pp.17-20
    • /
    • 2024
  • 본 논문은 전통적인 자원 집약적인 컴퓨터 비전 모델의 한계를 해결하기 위해 저전력 엣지 장치에 최적화된 새로운 경량 객체 검출 모델을 제안합니다. 제안된 검출기는 Single Shot Detector (SSD)에 기반하여 소형이면서도 견고한 네트워크를 설계하였고, 작은 객체를 효율적으로 감지하는 데 있어 효율성을 크게 향상시키도록 모델을 구성하였다. 이 모델은 주로 두 가지 구성요소로 구성되어 있습니다: Depthwise 와 Pointwise Convolution 레이어를 사용하여 효율적인 특징 추출을 위한 Light_Block, 그리고 작은 객체의 향상된 감지를 위한 Enhancer_Block 으로 나누었다. 우리의 모델은 300x480 의 이미지 크기를 가진 Udacity 주석이 달린 데이터셋에서 처음부터 훈련되었으며, 사전 훈련된 분류 가중치의 필요성을 제거하였다. 약 0.43M 의 파라미터로 5.5MB 만의 무게를 가진 우리의 검출기는 평균 정밀도 (mAP) 27.7%와 140 FPS 의 처리 속도를 달성하여, 정밀도와 효율성 모두에서 기존 모델을 능가하였다. 따라서, 본 논문은 추론의 정확성을 손상시키지 않으면서 엣지 장치를 위한 객체 검출에서의 효과적인 경량화를 보여주고 있다.

매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색 (Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage)

  • 권문희;김승섭
    • 자원환경지질
    • /
    • 제55권5호
    • /
    • pp.551-561
    • /
    • 2022
  • 지구물리탐사기법은 매장 문화재 조사에 필요한 높은 해상도의 지하 구조 영상 생성과 매장 유구의 정확한 위치 결정하는 데 매우 유용하다. 이 연구에서는 경주 신라왕경 중심방의 고해상도 지하투과레이더 영상에서 유구의 규칙적인 배열이나 선형 구조를 자동적으로 구분하기 위하여 영상처리 기법인 영상 특징 추출과 영상분할 기법을 적용하였다. 영상 특징 추출의 대상은 유구의 원형 적심과 선형의 도로 및 담장으로 캐니 윤곽선 검출(Canny edge detection)과 허프 변환(Hough Transform) 알고리듬을 적용하였다. 캐니 윤곽선 검출 알고리듬으로 검출된 윤곽선 이미지에 허프 변환을 적용하여 유구의 위치를 탐사 영상에서 자동 결정하고자 하였으나, 탐사 지역별로 매개변수를 달리해서 적용해야 한다는 제약이 있었다. 영상 분할 기법의 경우 연결요소 분석 알고리듬과 QGIS에서 제공하는 Orfeo Toolbox (OTB)를 이용한 객체기반 영상분석을 적용하였다. 연결 요소 분석 결과에서, 유구에 의한 신호들이 연결된 요소들로 효과적으로 인식되었지만 하나의 유구가 여러 요소로 분할되어 인식되는 경우도 발생함을 확인하였다. 객체기반 영상분석에서는 평균이동(Large-Scale Mean-Shift, LSMS) 영상 분할을 적용하여 각 분할 영역에 대한 화소 정보가 포함된 벡터 레이어를 우선 생성하였고, 유구를 포함하는 영역과 포함하지 않는 영역을 선별하여 훈련 모델을 생성하였다. 이 훈련모델에 기반한 랜덤포레스트 분류기를 이용해 LSMS 영상분할 벡터 레이어에서 유구를 포함하는 영역과 그렇지 않은 영역이 자동 분류 될 수 있음을 확인하였다. 이러한 자동 분류방법을 매장 문화재 지하투과레이더 영상에 적용한다면 유구 발굴 계획에 활용가능한 일관성 있는 결과를 얻을 것으로 기대한다.

현실감 있는 3차원 얼굴 애니메이션을 위한 실시간 표정 제어 (A Realtime Expression Control for Realistic 3D Facial Animation)

  • 김정기;민경필;전준철;최용길
    • 인터넷정보학회논문지
    • /
    • 제7권2호
    • /
    • pp.23-35
    • /
    • 2006
  • 본 논문에서는 실시간으로 입력되는 동영상으로부터 영상 내에 존재하는 사람의 얼굴 및 얼굴 특징점들을 자동으로 추출한 후, 추출된 정보를 이용하여 3차원 얼굴 모델의 표정을 실시간으로 제어함으로써 현실감 있는 얼굴 애니메이션 처리가 가능한 새로운 방법을 제시한다. 입력 영상의 각 프레임으로부터 얼굴을 효과적으로 추출하기 위해 기존에 일반적으로 사용되는 색상 공간을 이용한 파라미터 검출 방법에 대변되는 새로운 비파라미터 검출 방법을 제시하였다. 기존의 파라미터 검출 방법은 일반적으로 얼굴의 피부 색상분포를 가우지언 형태로 표현하며 특히 주변조명의 변화 및 배경 영상 등에 민감하게 반응하므로 정화한 영역의 검출을 위한 부가적 작업을 필요로 한다. 이러한 문제점을 효과적으로 해결하기 위하여 본 논문에서는 Hue와 Tint 색상 성분에 기반을 둔 새로운 스킨 색상 공간을 제시하고 모델의 분포특성을 직선 형식으로 표현하여 얼굴검출 시 발생되는 오류를 축소시킬 수 있었다. 또한, 검출된 얼굴 영역으로부터 정확한 얼굴특성 정보를 추출하기 위하여 각 특징영역에 대한 에지검색 결과와 얼굴의 비율 비를 적용하여 효과적으로 얼굴의 특징 영역을 검출하였다. 추출된 얼굴 특징점 변화 정보는 3차원 얼굴 모델의 실시간 표정 변화에 적용되며, 보다 실감 있는 얼굴 표정을 생성하기위하여 사람의 근육 정보와 근육의 움직이는 방법을 나타내는 Waters의 선형 근육 모델에 새로운 근육 정보들을 새롭게 추가함으로써 화장 적용하였다. 실험결과 제안된 방법을 이용하여 실시간으로 입력되는 대상의 얼굴표정을 3차원 얼굴 모델에 자연스럽게 표현할 수 있다.

  • PDF

퍼지 기반 잡음 제거 방법과 ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 컨테이너 인식 시스템 (Container Image Recognition using Fuzzy-based Noise Removal Method and ART2-based Self-Organizing Supervised Learning Algorithm)

  • 김광백;허경용;우영운
    • 한국정보통신학회논문지
    • /
    • 제11권7호
    • /
    • pp.1380-1386
    • /
    • 2007
  • 본 논문에서는 퍼지 기반 잡음 제거 방법과 ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 글자색이 검정색 또는 흰색으로 이루어져 있는 특징이 있다. 이러한 특성을 고려하여 원 컨테이너 영상에 대해 검은색과 흰색을 제외한 모든 부분을 잡음으로 처리하기 위해 퍼지를 이용한 잡음 판단 방법을 적용하여 식별자 영역과 잡음을 구별한다. 그리고 Sobel 마스크를 이용하여 에지를 검출하고, 추출된 에지를 이용하여 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화된 식별자 영역에 대해 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 개별 식별자 인식을 위해 ART2 기반 자가 생성 지도 학습 알고리즘을 제안하여 개별 식별자 인식에 적용한다. ART2 기반 자가 생성 지도 학습 알고리즘은 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출 방법이 개선되었다. 그리고 기존의 식별자 인식 알고리즘보다 제안된 ART2 기반 자가 생성 지도 학습 알고리즘이 식별자의 학습 및 인식에 있어서 우수한 성능이 있음을 확인하였다.

비소 및 중금속 오염토양 안정화 분야에서의 X선 흡수분광법(XAS) 활용 (Application of X-ray Absorption Spectroscopy (XAS) in the Field of Stabilization of As and Heavy Metal Contaminated Soil)

  • 임정은;문덕현;김권래;옥용식
    • Journal of Applied Biological Chemistry
    • /
    • 제58권1호
    • /
    • pp.65-74
    • /
    • 2015
  • X선 흡수분광법(X-ray absorption spectroscopy, XAS)을 이용하는 X선 흡수미세구조(X-ray absorption fine structure, XAFS)의 분석은 다양한 학문분야에서 적용되고 있다. 본 연구에서는 XAFS 분석을 위한 토양 시료의 준비에서부터 XAFS 측정 후 X선 흡수 끝머리 부근 미세구조(X-ray absorption near edge structure, XANES) 및 광범위 X선 흡수 미세구조(extended Xray absorption fine structure, EXAFS) 데이터를 추출하여 연구에 활용하는 것에 대해 간략하게 소개하였다. 특히 토양환경 분야에서 XANES 및 EXAFS 분석을 활용한 선행연구들에 대해 비소(As) 및 중금속 주요 원소(Cd, Cu, Ni, Pb, Zn)별로 그 내용을 정리하였다. 토양환경 분야에서 XAFS의 응용은 납(Pb)의 화학종 규명에 관한 연구가 가장 많은 것으로 나타났다. 이와 함께 대부분의 연구들은 오염토양 내 중금속 화학종의 규명을 통해 중금속의 유입 원인 등에 대해 기술하고 있으며, 이를 정화하기 위한 다양한 방법들(개량제 처리, 식물정화)을 적용한 후, 안정화된 중금속 화학종을 XANES 및 EXAFS 분석을 통해 규명하여 정화 방법들의 효율성과 안정성에 대해 보고하였다.

AAM 기반 얼굴 표정 인식을 위한 입술 특징점 검출 성능 향상 연구 (A Study on Enhancing the Performance of Detecting Lip Feature Points for Facial Expression Recognition Based on AAM)

  • 한은정;강병준;박강령
    • 정보처리학회논문지B
    • /
    • 제16B권4호
    • /
    • pp.299-308
    • /
    • 2009
  • AAM(Active Appearance Model)은 PCA(Principal Component Analysis)를 기반으로 객체의 형태(shape)와 질감(texture) 정보에 대한 통계적 모델을 통해 얼굴의 특징점을 검출하는 알고리즘으로 얼굴인식, 얼굴 모델링, 표정인식과 같은 응용에 널리 사용되고 있다. 하지만, AAM알고리즘은 초기 값에 민감하고 입력영상이 학습 데이터 영상과의 차이가 클 경우에는 검출 에러가 증가되는 문제가 있다. 특히, 입을 다문 입력얼굴 영상의 경우에는 비교적 높은 검출 정확도를 나타내지만, 사용자의 표정에 따라 입을 벌리거나 입의 모양이 변형된 얼굴 입력 영상의 경우에는 입술에 대한 검출 오류가 매우 증가되는 문제점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 입술 특징점 검출을 통해 정확한 입술 영역을 검출한 후에 이 정보를 이용하여 AAM을 수행함으로써 얼굴 특징점 검출 정확성을 향상시키는 방법을 제안한다. 본 논문에서는 AAM으로 검출한 얼굴 특징점 정보를 기반으로 초기 입술 탐색 영역을 설정하고, 탐색 영역 내에서 Canny 경계 검출 및 히스토그램 프로젝션 방법을 이용하여 입술의 양 끝점을 추출한 후, 입술의 양 끝점을 기반으로 재설정된 탐색영역 내에서 입술의 칼라 정보와 에지 정보를 함께 결합함으로써 입술 검출의 정확도 및 처리속도를 향상시켰다. 실험결과, AAM 알고리즘을 단독으로 사용할 때보다, 제안한 방법을 사용하였을 경우 입술 특징점 검출 RMS(Root Mean Square) 에러가 4.21픽셀만큼 감소하였다.

곡선 궤적의 이동 관측점에 대한 다면체 모델의 윤곽선 추출 (Extracting Silhouettes of a Polyhedral Model from a Curved Viewpoint Trajectory)

  • 김구진;백낙훈
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제8권2호
    • /
    • pp.1-7
    • /
    • 2002
  • 컴퓨터 그래픽스 및 애니메이션에서 물체의 윤곽선 계산은 많은 응용분야에서 빈번히 사용되고 있으며, 윤곽선의 효율적인 계산 방법은 현재까지 많은 연구자들의 관심을 끌어왔다. 본 논문에서는 이동하는 관측점에 대해 다면체 모델의 투시 윤곽선을 계산하는 효율적인 알고리즘을 제시한다. 관측점이 시간에 따라 이동하는 경로는 시간을 나타내는 매개변수 t를 이용하여 곡선 q(t)로 표현한다. 다면체의 각 에지(edge)가 윤곽선에 포함되는 시간 간격 (time-interval)은 에지에 인접한 두 면의 supporting plane들과 q(t)의 교점 계산, 그리고 몇 차례의 벡터 내적을 수행함으로써 구해진다. 곡선 q(t)가 차수 n의 곡선이라면, 한 에지가 윤곽선에 포함되는 시간 간격은 최대 n + 1 개 존재할 수 있다. 미리 구해진 시간 간격들에 대해 고정된 시점 $t_i$를 포함하는 시간 간격들을 검색함으로써 관측점이 $q(t_i)$일 때 모델의 윤곽선에 포함되는 모든 에지를 구할 수 있다. 윤곽선 계산의 효율성은 시간 간격을 저장하는 자료구조 (data structure)와 밀접한 관련이 있으므로, 시간 간격을 저장하는 자료구조로서 인터벌 트리 (interval tree)의 사용을 제안한다. 또한, 제시된 알고리즘에 의해 윤곽선을 계산한 실험결과를 보인다.

  • PDF

박하(Mentha arvensis) 향료의 향기성분이 정신적 스트레스 완화에 미치는 효과 (Fragrance Chemicals in the Essential Oil of Mentha arvensis Reduce Levels of Mental Stress)

  • 조해미;칸다사미 손하라라잔;정지욱;주진우;김성문
    • 생명과학회지
    • /
    • 제23권7호
    • /
    • pp.933-940
    • /
    • 2013
  • 본 연구는 박하(Mentha arvensis) 식물 유래 향료의 향기성분을 구명하고, 향기성분들이 인간의 뇌파에 어떠한 영향을 미치는지를 이해하고자 수행하였다. 초임계추출기를 이용하여 박하 식물(Mentha arvensis L. f. piperascens)로부터 에센셜오일을 얻었으며, 최적 회수율은 $70^{\circ}C$, 200 bar 조건에서 2.38%이었다. 박하 에센셜오일에 함유되어 있는 향기 화합물을HS-SPME/GC-MS로 분석한 결과, 총 32종의 화합물이 검출되었는데 alcohol 류가 6종(67.11%), hydrocarbon 류가 13종(17.05%), ester 류가 9종(11.50%), ketone 류가 2종(7.16%), oxide가 1종(2.77%) 그리고 aldehyde가 1종(0.56%)이었다. 박하 에센셜오일에 함유된 주된 향기 화합물은 (Z,Z,Z)-9,12,15-octadecatrien-1-ol (50.06%), 2-hydroxy-4-methoxyacetophenone (7.50%)과 3,4-dihydro-8-hydroxy-3-methyl-1H-2-benzopyran-1-one (6.60%) 이었다. 총 20명의 피험자(남녀 각 10명)를 대상으로 박하 에센셜오일 향기 흡입 전과 흡입 중에 뇌파분석을 수행한 결과, 향기를 흡입 중에는, 흡입 전과 비교하여, relative fast alpha power spectrum이 유의성 있게 증가하는 반면(p<0.05), gamma power spectrum과 spectral edge frequency 90% 지표는 유의성 있게 감소하는 결과를 얻었다(p<0.05). 본 연구의 결과들은 박하의 향기성분이 정신적 긴장을 완화시킨다는 것을 시사하여 준다.

에지 확장을 통한 제어 흐름 그래프의 효과적인 비교 방법 (An Effective Method for Comparing Control Flow Graphs through Edge Extension)

  • 임현일
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제2권8호
    • /
    • pp.317-326
    • /
    • 2013
  • 본 논문에서는 바이너리 프로그램의 정적인 구조를 표현하는 제어 흐름 그래프를 비교하는 방법을 제안한다. 제어 흐름 그래프를 비교하기 위해서 기본 블록에 포함된 프로그램의 명령어 및 구문 정보를 비교한 후 기본 블록 사이의 유사한 정도를 측정한다. 또한, 에지 확장을 통해 기본 블록들 간의 제어 흐름을 표현하는 그래프 에지의 유사성을 함께 반영한다. 각 기본 블록 사이의 유사도 결과를 기반으로 기본 블록을 서로 매칭하고, 기본 블록 사이의 매칭 정보를 이용해서 전체 제어 흐름 그래프의 유사도를 측정한다. 본 논문에서 제안한 방법은 자바 프로그램으로부터 추출한 제어 흐름 그래프를 대상으로 제어 흐름 구조의 유사성에 따라 두 가지 기준으로 실험을 수행하였다. 그리고, 성능을 평가하기 위해서 기존의 구조적 비교 방법을 함께 실험하였다. 실험 결과로부터 에지 확장 방법은 서로 다른 프로그램에 대해 충분한 변별력을 가지고 있음을 확인할 수 있다. 프로그램 비교에 좀 더 많은 시간이 소요되지만, 구조가 유사한 프로그램에 대한 매칭 능력에서 기존의 구조적 비교 방법에 비해 우수한 결과를 보였다. 제어 흐름 그래프는 프로그램의 분석에 다양하게 활용될 수 있으며, 제어 흐름 그래프의 비교 방법은 프로그램의 유사성 비교를 통한 코드의 최적화, 유사 코드 검출, 코드의 도용 탐지 등 다양한 분야에서 응용될 수 있을 것이라 기대된다.

다중 클래스 SVM과 주석 코드 배열을 이용한 의료 영상 자동 주석 생성 (Medical Image Automatic Annotation Using Multi-class SVM and Annotation Code Array)

  • 박기희;고병철;남재열
    • 정보처리학회논문지B
    • /
    • 제16B권4호
    • /
    • pp.281-288
    • /
    • 2009
  • 본 논문은 의료 영상 중 X-ray 영상에 대한 효과적인 분류와 자동 주석 생성을 위한 방법을 제안한다. X-ray 영상은 일반 자연 영상과는 다르게 영상 내에 중요한 의미를 가지고 있는 관심 영역과 어두운 단색의 배경으로 구성된 특징을 가지고 있음으로 본 논문에서는, 영상의 중요영역에서 해리스 코너 검출기를 이용한 색 구조 기술자(H-CSD)로 색 특징을 추출하고, 질감 특징을 위해 경계선 히스토그램 기술자(EHD)를 사용하였다. 추출된 두 개의 특징 벡터들은 각각 다중 클래스 Support Vector Machine에 적용되어 20개의 카테고리 중 하나로 영상을 분류한다. 마지막으로, 영상은 미리 정의된 카테고리들의 계층적인 관계와 우선 순위에 기반하여 주석 코드 배열(Annotation Code Array)을 부여 받고 이를 이용하여 다수의 최적 키워드를 얻으며 갖게 된다. 실험에서는 제안한 주석 생성방법을 관련 연구 방법과 비교하여 성능이 개선 되었음을 보여주고 있다.