DOI QR코드

DOI QR Code

Fragrance Chemicals in the Essential Oil of Mentha arvensis Reduce Levels of Mental Stress

박하(Mentha arvensis) 향료의 향기성분이 정신적 스트레스 완화에 미치는 효과

  • Cho, Haeme (Department of Biological Environment, Kangwon National University) ;
  • Sowndhararajan, Kandhasamy (Department of Biological Environment, Kangwon National University) ;
  • Jung, Ji-Wook (Department of Herbal Medicinal Pharmacology, Daegu Haany University) ;
  • Jhoo, Jin-Woo (Department of Animal Products and Food Science, Kangwon National University) ;
  • Kim, Songmun (Department of Biological Environment, Kangwon National University)
  • Received : 2013.05.29
  • Accepted : 2013.07.25
  • Published : 2013.07.30

Abstract

The aim of this work was to determine the chemical composition of essential oil from aerial partsof Mentha arvensis L. f. piperascens (MAO) and to evaluate the effect of its fragrant chemicals on electroencephalographic (EEG) activity of human brain. The MAO was obtained by supercritical $CO_2$ extraction. The maximum yield was 2.38% at conditions of $70^{\circ}C$ and 200 bar. There were 32 volatile chemicals with 6 alcohols (67.11%), 13 hydrocarbons (17.05%), 9 esters (11.50%), 2 ketones (7.16%), 1 oxide (2.77%), and 1 aldehyde (0.56%). The major components were (Z,Z,Z)-9,12,15-octadecatrien-1-ol (50.06%), 2-hydroxy-4-methoxyacetophenone (7.50%), and 3,4-dihydro-8-hydroxy-3-methyl-1H-2-benzopyran-1-one (6.60%). Results of the EEG study showed that inhalation of MAO significantly changed the EEG power spectrum values of relative gamma, relative fast alpha, and spectral edge frequency 90%. During the inhalation of MAO, the value of relative fast alpha was significantly increased (p<0.05). On the other hand, the values of gamma and the spectral edge frequency 90% were significantly decreased (p<0.05). The present study suggests that fragrant chemicals of essential oil of M. arvensis reduce the level of mental stress and that they could be used in the treatment of psychophysiological disorders.

본 연구는 박하(Mentha arvensis) 식물 유래 향료의 향기성분을 구명하고, 향기성분들이 인간의 뇌파에 어떠한 영향을 미치는지를 이해하고자 수행하였다. 초임계추출기를 이용하여 박하 식물(Mentha arvensis L. f. piperascens)로부터 에센셜오일을 얻었으며, 최적 회수율은 $70^{\circ}C$, 200 bar 조건에서 2.38%이었다. 박하 에센셜오일에 함유되어 있는 향기 화합물을HS-SPME/GC-MS로 분석한 결과, 총 32종의 화합물이 검출되었는데 alcohol 류가 6종(67.11%), hydrocarbon 류가 13종(17.05%), ester 류가 9종(11.50%), ketone 류가 2종(7.16%), oxide가 1종(2.77%) 그리고 aldehyde가 1종(0.56%)이었다. 박하 에센셜오일에 함유된 주된 향기 화합물은 (Z,Z,Z)-9,12,15-octadecatrien-1-ol (50.06%), 2-hydroxy-4-methoxyacetophenone (7.50%)과 3,4-dihydro-8-hydroxy-3-methyl-1H-2-benzopyran-1-one (6.60%) 이었다. 총 20명의 피험자(남녀 각 10명)를 대상으로 박하 에센셜오일 향기 흡입 전과 흡입 중에 뇌파분석을 수행한 결과, 향기를 흡입 중에는, 흡입 전과 비교하여, relative fast alpha power spectrum이 유의성 있게 증가하는 반면(p<0.05), gamma power spectrum과 spectral edge frequency 90% 지표는 유의성 있게 감소하는 결과를 얻었다(p<0.05). 본 연구의 결과들은 박하의 향기성분이 정신적 긴장을 완화시킨다는 것을 시사하여 준다.

Keywords

References

  1. Alvi, M. N., Ahmad, S. and Rehman, K. 2001. Preparation of menthol crystals from Mint (Mentha arvensis). Int J Agric Biol 3, 527-528.
  2. Bakkali, F., Averbeck, S., Averbeck, D. and Idaomar, M. 2008. Biological effects of essential oils – a review. Food Chem Toxicol 46, 446-475. https://doi.org/10.1016/j.fct.2007.09.106
  3. Baysal, T. and Starmens, D. A. J. 1999 Supercritical carbon dioxide extraction of carvone and limonene from caraway seed. J Supercrit Fluid 14, 225-234. https://doi.org/10.1016/S0896-8446(98)00099-0
  4. Cao, X., Tian, Y., Zhang, T. and Ito, Y. 2000. Supercritical fluid extraction of catechins from Cratoxylum prunifolium Dyer and subsequent purification by high-speed counter- current chromatography. J Chromatogr A 898, 75-81. https://doi.org/10.1016/S0021-9673(00)00788-3
  5. Danh, L. T., Triet, N. D. A., Hana, L. T. N., Zhaoa, J., Mammucaria, R. and Fostera, N. 2012. Antioxidant activity, yield and chemical composition of lavender essential oil extracted by supercritical $CO_2$. J Supercrit Fluid 70, 27-34. https://doi.org/10.1016/j.supflu.2012.06.008
  6. Diego, M. A., Jones, N. A., Field, T., Hernandez- Reif, M., Schanberg, S., Kuhn, C., McAdam, V., Galamaga, R. and Galamaga, M. 1998. Aromatherapy positively affects mood, EEG patterns of alertness and math computations. Int J Neurosci 96, 217-224. https://doi.org/10.3109/00207459808986469
  7. Dorman, H. J. D., Kosar, M., Kahlos, K., Holm, Y. and Hiltunen, R. 2003. Antioxidant properties and Composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J Agric Food Chem 51, 4563-4569. https://doi.org/10.1021/jf034108k
  8. Edris, A. E. 2007. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents:a review. Phytother Res 21, 308-323. https://doi.org/10.1002/ptr.2072
  9. Iijima, M., Osawa, M., Nishitani, N. and Iwata, M. 2009. Effects of incense on brain function: evaluation using electroencephalograms and event related potentials. Neuropsychobiology 59, 80-86. https://doi.org/10.1159/000209859
  10. Jordan, M. J., Martinez, R. M., Goodner, K. L., Baldwin, E. A. and Sotomayor, J. A. 2006. Seasonal variation of Thymus hyemalis Lange and Spanish Thymus vulgaris L. essential oils composition. Ind Crop Prod 24, 253-263. https://doi.org/10.1016/j.indcrop.2006.06.011
  11. Khajeh, M., Yamini, Y., Bahramifar, N., Sefidkon, F. and Pirmoradei, M. R. 2005. Comparison of essential oils compositions of Ferula assa-foetida obtained by supercritical carbon dioxide extraction and hydrodistillation methods. Food Chem 91, 639-644. https://doi.org/10.1016/j.foodchem.2004.06.033
  12. Klimesch, W. 1999. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29, 169-195. https://doi.org/10.1016/S0165-0173(98)00056-3
  13. Kowati, R., Satish, B. P., Harsha, R., Dinesha, R. and Hareesh, A. R. 2010. In vitro antioxidant activity of leaves of Mentha arvensis Linn. J Pharm Res 3, 1951-1954.
  14. Mejri, J., Abderrabba, M. and Mejri, M. 2010. Chemical composition of the essential oil of Ruta chalepensis L: influence of drying, hydro-distillation duration and plant parts. Ind Crop Prod 32, 671-673. https://doi.org/10.1016/j.indcrop.2010.05.002
  15. Motomura, N., Sakuri, A. and Yoysuya, Y. 2001. Reduction of mental stress with lavender odorant. Percept Mot Skills 93, 713-718. https://doi.org/10.2466/pms.2001.93.3.713
  16. Patil, K. and Mall, A. 2012. Hepatoprotective activity of Mentha arvensis Linn. leaves against $CCL_4$ induced liver damage in rats. Asian Pac J Trop Dis 2, S223-S226. https://doi.org/10.1016/S2221-1691(12)60046-X
  17. Reverchon, E. 1997. Supercritical fluid extraction and fractionation of essential oils and related products. J Supercrit Fluid 12, 37-41.
  18. Rombola, L., Corasaniti, M. T., Rotiroti, D., Tassorelli, C., Sakurada, S., Bagetta, G. and Morrone, L. A. 2009. Effects of systemic administration of the essential oil of bergamot (BEO) on gross behaviour and EEG power spectra recorded from the rat hippocampus and cerebral cortex. Funct Neurol 24, 107-112.
  19. Sayowan, W., Siripornpanich, V., Piriyapunyaporn, T., Hongratanaworakit, T., Kotchabhakdi, N. and Ruangrungsi, N. 2012. The effects of lavender oil inhalation on emotional states, autonomic nervous system, and brain electrical activity. J Med Assoc Thai 95, 598-606.
  20. Schwender, D., Daunderer, M., Mulzer, S., Klasing, S., Finsterer, U. and Peter, K. 1996. Specral edge frequency of the electroencephalogram to monitor “depth” of anaesthesia with isoflurane and propofol. Brit J Anaesth 77, 179-184. https://doi.org/10.1093/bja/77.2.179
  21. Shaiq Ali, M., Saleem, M., Ahmad, W., Parvez, M. and Yamdagni, R. 2002. A chlorinated monoterpene ketone, acylated $\beta$-sitosterol glycosides and a flavanone glycoside from Mentha longifolia (Lamiaceae). Phytochemistry 59, 889-895. https://doi.org/10.1016/S0031-9422(01)00490-3
  22. Sinha, R. and Chattopadhyay, S. 2011. Changes in the leaf proteome profile of Mentha arvensis in response to Alternaria alternata infection. J Proteomics 74, 327-336. https://doi.org/10.1016/j.jprot.2010.11.009
  23. Sokovic, M. D., Vukojevic, J., Marin, P. D., Berkik, D. D., Vajs, V. and Griensven, L. J. L. D. 2009. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 14, 238-249. https://doi.org/10.3390/molecules14010238
  24. Teixeira, B., Marques, A., Ramos, C., Neng, N. R., Nogueira, J. M. F., Saraiva, J. A. and Nunes, M. L. 2013. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind Crop Prod 43, 587-595. https://doi.org/10.1016/j.indcrop.2012.07.069
  25. Tonner, P. H. and Bein. B. 2006. Classic electroencephalographic parameters: Median frequency, spectral edge frequency etc. Best Pract Res Clin Anaesthesiol 20, 147-159. https://doi.org/10.1016/j.bpa.2005.08.008
  26. Varona, S., Martin, A., Cocero, M. J. and Gamse, T. 2008. Supercritical carbon dioxide fractionation of Lavandin essential oil. Experiments and modeling. J Supercrit Fluid 45, 181-188. https://doi.org/10.1016/j.supflu.2007.07.010
  27. Verma, R. S., Rahman, L., Verma, R. K., Chauhan, A., Yadav, A. K. and Singh, A. 2010. Essential oil composition of menthol mint (Mentha arvensis) and peppermint (Mentha piperita) cultivars at different stages of plant growth from Kumaon region of Western Himalaya. Open Acc J Med Arom Plants 1, 13-18.
  28. Zhu, L. F., Dong, H. Z., Yang, S. X., Zhu, H. T., Xu, M., Zeng, S. F., Yang, C. R. and Zhang, Y. J. 2012. Chemical compositions and antioxidant activity of essential oil from green tea produced from Camellia taliensis (Theaceae) in Yuanjian, Southwestern China. Plant Divers Resour 34, 409-416. https://doi.org/10.3724/SP.J.1143.2012.12008

Cited by

  1. Influence of Fragrances on Human Psychophysiological Activity: With Special Reference to Human Electroencephalographic Response vol.84, pp.4, 2016, https://doi.org/10.3390/scipharm84040724
  2. Changes in the Electroencephalographic Activity in Response to Odors Produced by Organic Compounds pp.2151-2124, 2020, https://doi.org/10.1027/0269-8803/a000234