• 제목/요약/키워드: edge 추출

검색결과 850건 처리시간 0.028초

몰입형 화상 회의를 위한 강건한 객체 추출 방법 (A Robust Object Extraction Method for Immersive Video Conferencing)

  • 안일구;오대영;김재광;김창익
    • 대한전자공학회논문지SP
    • /
    • 제48권2호
    • /
    • pp.11-23
    • /
    • 2011
  • 본 논문에서 우리는 실시간 성능이 요구되는 비디오 화상회의 시스템을 위해 사전정보 없이 정확하면서도 완전히 자동으로 비디오 객체를 추출하는 방법을 제안한다. 제안하는 방법은 두 단계로 이루어진다: 1) 초기 프레임에서의 정확한 객체 추출, 2) 객체 추출 결과를 이용한 그 이후 프레임에서의 실시간 객체 추출. 초기 프레임에서의 객체 추출은 초기 프레임들의 차영상으로부터 구한 에지들을 누적시킨 누적 에지맵 생성으로부터 시작된다. 즉, 객체의 초기 움직임의 누적으로부터 객체의 형상을 추측하고자 하는 것이다. 이 추측된 형상은 그래프 컷(Graph-Cut) 영상 분할을 위한 객체 씨드(seeds)와 배경 씨드를 할당하는데 이용된다. 그래프 컷 기반 객체 추출 이후 프레임부터는 객체 추출 결과와 연속된 프레임의 차영상의 에지맵을 이용하여 실시간 객체 추출이 수행된다. 실험결과를 통해 제안하는 방법이 이전 연구들과 달리 VGA 크기의 비디오에 대해서도 실시간으로 동작함을 보이고, 따라서 몰입적인 비디오 화상회의 시스템의 개발을 위한 유용한 도구임을 보이고자 한다.

Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출 (Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm)

  • 신영숙
    • 인지과학
    • /
    • 제14권1호
    • /
    • pp.10-10
    • /
    • 2003
  • 본 논문은 Gabor 웨이브렛 변환을 이용하여 무표정을 포함한 표정영상에서 얼굴의 주요 요소들의 경계선을 추출한 후, FCM 군집화 알고리즘을 적용하여 무표정 영상에서 저차원의 대표적인 특징점을 추출한다. 무표정 영상의 특징점들은 표정영상의 특징점들을 추출하기 위한 템플릿으로 사용되어지며, 표정영상의 특징점 추출은 무표정 영상의 특징점과 동적 연결모형을 이용하여 개략적인 정합과 정밀한 정합 과정의 두단계로 이루어진다. 본 논문에서는 Gabor 웨이브렛과 FCM 군집화 알고리즘을 기반으로 동적 연결모형을 이용하여 표정영상에서 특징점들을 자동으로 추출할 수 있음을 제시한다. 본 연구결과는 자동 특징추출을 이용한 차원모형기반 얼굴 표정인식[1]에서 얼굴표정의 특징점을 자동으로 추출하는 데 적용되었다.

이미지 센서에 의해 발생하는 노이즈 제거를 위한 영상의 조도에 따른 적응적 로컬 시그마 필터의 구현 (Implementation of the adaptive Local Sigma Filter by the luminance for reducing the Noises created by the Image Sensor)

  • 김병현;곽부동;한학용;강봉순;이기동
    • 융합신호처리학회논문지
    • /
    • 제11권3호
    • /
    • pp.189-196
    • /
    • 2010
  • 본 논문에서는 이미지 센서에 의해 발생하는 노이즈를 제거하기 위한 적응적 로컬 시그마 필터 장치를 제안하였다. 이미지 센서에 의해 발생하는 작은 노이즈는 이미지 센서의 아날로그 게인과 노출시간의 증가로 인해 영상 정보와 함께 증폭되며 이러한 노이즈 제거를 목표로 시스템을 설계 하였다. Flatness Index Map 알고리즘을 사용해 영상의 윤곽선을 추출하였으며, 임계치가 영상의 휘도에 따라 적응적으로 변화하도록 설계하여 고조도 영상에서는 윤곽선 추출을 수행하지 않으며, 저조도에서만 윤곽선을 추출하도록 하였다. 추출된 윤곽선을 판단하여 그에 해당하는 픽셀에 대해서만 Local Sigma Filter 알고리즘을 사용하여 노이즈 제거를 수행 하였다. 설계된 필터의 성능 검증을 위해 윈도우 테스트 프로그램을 제작하였다. 그리고 HDL을 사용해 하드웨어로 설계하였으며, FPGA Demonstration board와 $1280{\times}720$ 이미지 사이즈, 30 frame/sec의 성능을 갖는 HD급 CMOS 이미지 센서를 사용해 하드웨어로 설계된 로컬 시그마 필터의 동작을 검증하였다.

이웃 에지 탐색에 의한 개선된 객체 윤곽선 추출 알고리즘과 MER을 이용한 모의훈련에서의 폐색처리 (Occlusion Processing in Simulation using Improved Object Contour Extraction Algorithm by Neighboring edge Search and MER)

  • 차정희;김계영;최형일
    • 한국지능시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.206-211
    • /
    • 2008
  • 영상처리 기술을 이용한 모의훈련에서 사용자는 영상에 전시된 가상객체를 통해 실세계와의 상호작용과 인식능력을 향상시킬 수 있다. 따라서 현실감 있는 모의훈련을 위해서는 가상객체와 실영상을 정합한 후 가상객체로 인해 생기는 폐색영역을 결정하는 것이 필수적이다. 본 논문에서는 실 영상위에서 지정된 경로에 따라 가상표적을 이동시킬 때 발생하는 폐색문제를 이웃에지 탐색을 이용한 개선된 윤곽선 추출 알고리즘과 MER(Minimum Enclosing Rectangle)을 이용하여 해결한다. 제안된 윤곽선 추출 알고리즘에 의해 복잡한 물체에 대한 세부적인 윤곽을 얻은 후 성능향상을 위해 객체의 MER을 이용하여 폐색이 일어나는 지점의 3차원 정보를 산출하였다. 실험에서는 부분적 폐색이 발생하는 환경에서 제안한 방법을 기존방법과 비교하고 유효성을 입증하였다.

자동 모자이크 영상제작을 위한 접합선 추출기법에 관한 연구 (Technique of Seam-Line Extraction for Automatic Image Mosaic Generation)

  • 송낙현;이성훈;오금희;조우석
    • 한국측량학회지
    • /
    • 제25권1호
    • /
    • pp.47-53
    • /
    • 2007
  • 인공위성 영상을 이용하여 한반도 전역과 같이 넓은 지역에 대한 효율적인 영상 판독 및 분석 작업을 수행하기 위해서는 영상모자이크 작업이 필수적으로 요구된다. 본 논문은 영상모자이크 작업시 요구되는 접합선의 자동추출 기법과 이를 기반으로 한 자동 모자이크 영상제작 방법을 제시하였다. 인위적인 불연속을 최소화하는 접합선의 자동 추출기법으로는 검색영역에 대한 제약조건을 고려한 Minimum Absolute Gray Difference Sum 알고리즘과 Canny 에지검출 알고리즘을 함께 적용하였다. 또한 획득시기가 다른 인접영상간의 밝기 차이를 균일하게 유지시키기 위한 히스토그램 매칭 방법으로는 Match Cumulative Frequency 방법을 적용하였다. 본 연구의 결과 에지검출 기법을 통해 도로나 강 등과 같은 선형특성 지형 지물을 접합선으로 선정함으로서 인접영상간의 인위적인 불연속 형성을 최소화 할 수 있었다.

비파괴 검사를 이용한 항공 갑판의 결함 검출 (Detection of Flaws in Air Deck using Non-Destructive Testing)

  • 김광백;조재현
    • 한국정보통신학회논문지
    • /
    • 제15권9호
    • /
    • pp.1865-1870
    • /
    • 2011
  • 본 논문에서는 비파괴 검사를 통하여 얻어진 항공 갑판 영상에서, 조직의 결함의 정도를 자동으로 검출하는 방법을 제안한다. 먼저 비파괴 검사를 통하여 얻어진 항공 갑판 영상에서 감마상관 변환과 7${\times}$7 소벨 마스크와 13${\times}$13 소벨 마스크를 각각 적용하여 윤곽선을 추출하고 추출된 윤곽선 영역을 평활화와 평균 이진화 기법을 적용하여 영상을 보정한다. 마지막으로 보정된 영상에서 침식 연산과 팽창 연산을 이용하여 잡음을 제거한 후, 라벨링 기법을 적용하여 항공 갑판의 결함 영역을 추출한다. 실험 결과에서, 항공 갑판에서 결함을 추출하는데 기존의 방법보다 효과적인 것을 확인하였다.

정규화와 엔트로피의 최소화에 의한 영상 경계의 애매성 제거 및 영상 구조 파악에 의한 경계선 추출 (Removal of the Ambiguity of Images by Normalization and Entropy Minimization and Edge Detection by Understanding of Image Structures)

  • 조동욱;백승재
    • 한국정보처리학회논문지
    • /
    • 제6권9호
    • /
    • pp.2558-2562
    • /
    • 1999
  • 본 논문에서는 정규화 및 엔트로피의 최소화에 의해 영상의 애매성을 제거한 후, 톨이론을 적용하여 영상구조의 파악을 통하여 잡음 제거 및 경계선을 추출하는 방법에 대해 제안하고자 한다. 기존의 방법은 두 개의 영역이 유사한 명암도 분포값을 가지면서 접촉되어 있거나 명암도 값의 분포가 완만한 경우 경계선을 추출하지 못하는 문제가 존재하였다. 이는 후의 특징 추출 등과 같은 처리 과정에 영향을 미쳐 오인식과 직결되는 문제점을 야기한다. 본 논문에서는 이 같은 문제점을 해결하기 위한 방법론을 제안하고자 하며, 실험에 의해 본 논문의 유용성을 입증하고자 한다.

  • PDF

캐니 에지 검출을 이용한 해삼의 특징점 추출 (Feature Point Extraction of Sea Cucumbers using Canny Edge Detection)

  • 이건익;우영배;민준식;최철재
    • 한국전자통신학회논문지
    • /
    • 제13권6호
    • /
    • pp.1281-1286
    • /
    • 2018
  • 세계적으로 1500 종 이상이 분포하고 있는 해삼은 오랫동안 여러 나라에서 중요한 수산 자원으로 취급되어져 왔고 개체군 보존관리 보호종에 속하는 고부가가치 품종이다. 해삼에 관한 연구는 음식과 추출물의 효능에 관한 것이 대부분이며, 아직까지 해삼 특징 식별에 대한 연구는 이루어지지 않고 있다. 이에 본 연구는 고부가가치 품종인 해삼을 대량으로 포획하기 위하여 해삼의 특징점 추출을 위한 경계 검출 알고리즘을 제안하였으며 향후 해삼 인식 프로그램에 많은 도움이 되리라 생각한다.

에지 영상의 방향성분 히스토그램 특징을 이용한 자동차 번호판 영역 추출 (Extraction of Car License Plate Region Using Histogram Features of Edge Direction)

  • 김우태;임길택
    • 한국산업정보학회논문지
    • /
    • 제14권3호
    • /
    • pp.1-14
    • /
    • 2009
  • 본 논문에서는 번호판 영역의 추출에 사용될 수 있는 특징 벡터와 이를 이용하여 문자와 비문자를 판별하고 숫자를 인식하는 방법을 제안한다. 제안하는 특징 벡터는 영상의 기울기 벡터에서 얻어지는 에지 영상의 방향 코드 히스토그램으로부터 추출된다. 추출된 특징 벡터를 MD로 구현되는 문자 및 비문자 인식기에 입력하여 문자와 비문자를 판별함으로써 번호판 영역의 위치를 추정하고, 숫자를 인식한다. 실험 결과 제안하는 방법이 문자와 비문자의 정확한 판별, 번호판 영역의 위치 추정 및 숫자의 인식에 유용하게 적용될 수 있음을 알 수 있었다.

폭발장면 자동 검출을 위한 저급 수준 비디오 특징의 추상화 (Abstraction Mechanism of Low-Level Video Features for Automatic Retrieval of Explosion Scenes)

  • 이상혁;낭종호
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권5호
    • /
    • pp.389-401
    • /
    • 2001
  • 본 논문에서는 MPEG형식의 영화 데이터를 대상으로 폭발 장면 자동 추출을 위한 저급 수준 비디오 내용정보의 추상화 방법을 제안하고, 실제 구현을 통하여 그 유용성을 보인다. 제안한 추상화 방법은 폭발시 발생하는 불꽃의 색이 노란색 톤을 가진다는 사실과, 불꽃이 나타나는 프레임은 같은 tit에 속하는 이웃한 프레임과는 화면 구성이 달라지게 되므로 움직임 에너지 값이 커지게 된다는 사실을 바탕으로 한다. 이를 위해서 샷 단위의 인덱싱을 자동적으로 수행하고 각 샷의 첫 번째 프래임을 키 프레임으로 하다. 이를 위해서 샷 단위의 인덱싱을 자동적으로 수행하고 각 샷의 첫 번째 프레임을 키 프레임으로 선택한 후 영역별 주 색깔(Dominant Color)를 추출한다. 이때 색 공간은 양자화를 통한 512색 중 노란색 톤을 가지는 48 색 범위로 정의한다. 이후 매 샷마다 첫 번째 프레임과 이웃한 프레임의 에지 이미지(Edge Image)를 추출하여 이들의 차이로써 움직임 에너지(Motion Energy)를 얻는다. 이 두 가지 정보, 즉 노란색 톤을 가지는 색 정보와, 같은 장면 내의 다른 샷의 움직임 에너지에 비해 큰 값의 움직임 에너지를 갖는 샷을 폭발장면이 포함된 장면으로 검출한다. 실험 결과에 의하면 검색 결과는 주어진 임계값에 의존적이나, Recall과 Precision에서 80% 이상의 검출률을 보이고 있다. 그러나 일반적인 폭발 장면은 찾기에는 노란색 불꽃을 보이지 않는 예외적인 경우가 발생하여 이를 추출하는데 어려움이 있었다. 앞으로 이러한 문제점등은 기존의 오디오 정보를 이용한 폭발 장면 검출 방법과 함께 이용함으로써 해결되어질 수 있을 것이다.

  • PDF