• Title/Summary/Keyword: economic forecasting

Search Result 392, Processing Time 0.021 seconds

Long-Term Load Forecasting in Metropolitan Area Considering Economic Indicator (대도시 지역의 경제지표를 고려한 장기전력 부하예측 기법)

  • Choe, Sang-Bong;Kim, Dae-Gyeong;Jeong, Seong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.8
    • /
    • pp.380-389
    • /
    • 2000
  • This paper presents a method for the regional long-term load forecasting in metropolitan area considering econimic indicator with the assumption that energy demands propoprtionally increases under the economic indicators. For the accurate load forecasting, it is very important to scrutinize the correlation among the regional electric power demands, economic indicator and other characteristics because load forecasting results may vary depending on many different factors such as electric power demands, gross products, social trend and so on. Three steps for the regional long-term load forecasting are microscopically and macroscopically used for the regional long -term load forecasting in order to increase the accuracy and practicality of the results.

  • PDF

Long-term Load Forecasting considering economic indicator (경제지표를 고려한 장기전력부하예측 기법)

  • Choi, Sang-Bong;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Bae, Jeong-Hyo;Ha, Tae-Hwan;Lee, Hyun-Goo;Lee, Kang-Sae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1163-1165
    • /
    • 1998
  • This paper presents a method of the regional long-term load forecasting considering economic indicator with the assuption that energy demands proportionally increases with the economic indicators. For the accurate load forecasting, it is very important to scrutinize the correlation among the regional electric power demands, economic indicator and other characteristics because load forecasting results may vary depending on many different factors such as electric power demands, gross products, social trend and so on. Three steps are microscopically and macroscopically used for the regional long-term load forecasting in order to increase the accuracy and practically of the results.

  • PDF

Data-Mining Bootstrap Procedure with Potential Predictors in Forecasting Models: Evidence from Eight Countries in the Asia-Pacific Stock Markets

  • Lee, Hojin
    • East Asian Economic Review
    • /
    • v.23 no.4
    • /
    • pp.333-351
    • /
    • 2019
  • We use a data-mining bootstrap procedure to investigate the predictability test in the eight Asia-Pacific regional stock markets using in-sample and out-of-sample forecasting models. We address ourselves to the data-mining bias issues by using the data-mining bootstrap procedure proposed by Inoue and Kilian and applied to the US stock market data by Rapach and Wohar. The empirical findings show that stock returns are predictable not only in-sample but out-of-sample in Hong Kong, Malaysia, Singapore, and Korea with a few exceptions for some forecasting horizons. However, we find some significant disparity between in-sample and out-of-sample predictability in the Korean stock market. For Hong Kong, Malaysia, and Singapore, stock returns have predictable components both in-sample and out-of-sample. For the US, Australia, and Canada, we do not find any evidence of return predictability in-sample and out-of-sample with a few exceptions. For Japan, stock returns have a predictable component with price-earnings ratio as a forecasting variable for some out-of-sample forecasting horizons.

Neural Network Analysis in Forecasting the Malaysian GDP

  • SANUSI, Nur Azura;MOOSIN, Adzie Faraha;KUSAIRI, Suhal
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.109-114
    • /
    • 2020
  • The aim of this study is to develop basic artificial neural network models in forecasting the in-sample gross domestic product (GDP) of Malaysia. GDP is one of the main indicators in presenting the macro economic condition of a country as set by the world authority bodies such as the World Bank. Hence, this study uses an artificial neural network-based approach to make predictions concerning the economic growth of Malaysia. This method has been proposed due to its ability to overcome multicollinearity among variables, as well as the ability to cope with non-linear problems in Malaysia's growth data. The selected inputs and outputs are based on the previous literatures as well as the economic growth theory. Therefore, the selected inputs are exports, imports, private consumption, government expenditure, consumer price index (CPI), inflation rate, foreign direct investment (FDI) and money supply, which includes M1 and M2. Whilst, the output is real gross domestic product growth rate. The results of this study showed that the neural network method gives the smallest value of mean error which is 0.81 percent with a total difference of 0.70 percent. This implies that the neural network model is appropriate and is a relevant method in forecasting the economic growth of Malaysia.

A "Learning" System as an Economic Forecasting Tool in Mineral and Energy Industry -Case Study of U. S. Petroleum Resource Appraisal- (광물 및 에너지 분야 경제 예측 방법으로서의 배움모형)

  • Jeon, Gyoo Jeong
    • Economic and Environmental Geology
    • /
    • v.23 no.3
    • /
    • pp.323-328
    • /
    • 1990
  • This study explores that learning model that has been employed for many years in the description of and projection of system or process performance promises to be very useful in long-term forecasting, especially of technology or related productivity measures, in mineral and energy industries. This study also provides some empirical results on the measurement of the learning curve in U. S. petroleum resource assessment and demonstrates how the learning system can be used as an economic forecasting tool.

  • PDF

Design of Electric Power Load Forecasting Model based on IT2TSK FLS (IT2TSK 퍼지논리 기반 전력부하 예측 모델 설계에 관한 연구)

  • Bang, Young-Keun;Shim, Jae-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1088-1095
    • /
    • 2015
  • In most cases, the use of electric power is associated with the economic scale of a nation closely. Thus, the electric power load forecasting plays an important role for the national economic plan. This paper deals with the design method for the electric power load forecasting system. In this paper, RCR-MA data processing, which can make the complex properties of the original data form simple, is proposed. Next, IT2TSK FLS, which can reflect the uncertainty of data more than T1TSK FLS, is applied. Consequently, the structural advantage of the proposed system can improve the forecasting accuracy, and is verified by using two types of electric power data.

Bankruptcy Risk Level Forecasting Research for Automobile Parts Manufacturing Industry (자동차부품제조업의 부도 위험 수준 예측 연구)

  • Park, Kuen-Young;Han, Hyun-Soo
    • Journal of Information Technology Applications and Management
    • /
    • v.20 no.4
    • /
    • pp.221-234
    • /
    • 2013
  • In this paper, we report bankruptcy risk level forecasting result for automobile parts manufacturing industry. With the premise that upstream supply risk and downstream demand risk could impact on automobile parts industry bankruptcy level in advance, we draw upon industry input-output table to use the economic indicators which could reflect the extent of supply and demand risk of the automobile parts industry. To verify the validity of each economic indicator, we applied simple linear regression for each indicators by varying the time lag from one month (t-1) to 12 months (t-12). Finally, with the valid indicators obtained through the simple regressions, the composition of valid economic indicators are derived using stepwise linear regression. Using the monthly automobile parts industry bankruptcy frequency data accumulated during the 5 years, R-square values of the stepwise linear regression results are 68.7%, 91.5%, 85.3% for the 3, 6, 9 months time lag cases each respectively. The computational testing results verifies the effectiveness of our approach in forecasting bankruptcy risk forecasting of the automobile parts industry.

Economic Comparison of Wind Power Curtailment and ESS Operation for Mitigating Wind Power Forecasting Error (풍력발전 출력 예측오차 완화를 위한 출력제한운전과 ESS운전의 경제성 비교)

  • Wi, Young-Min;Jo, Hyung-Chul;Lee, Jaehee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.158-164
    • /
    • 2018
  • Wind power forecast is critical for efficient power system operation. However, wind power has high forecasting errors due to uncertainty caused by the climate change. These forecasting errors can have an adverse impact on the power system operation. In order to mitigate the issues caused by the wind power forecasting error, wind power curtailment and energy storage system (ESS) can be introduced in the power system. These methods can affect the economics of wind power resources. Therefore, it is necessary to evaluate the economics of the methods for mitigating the wind power forecasting error. This paper attempts to analyze the economics of wind power curtailment and ESS operation for mitigating wind power forecasting error. Numerical simulation results are presented to show the economic impact of wind power curtailment and ESS operation.

Forecast and Review of International Airline demand in Korea (한국의 국제선 항공수요 예측과 검토)

  • Kim, Young-Rok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.3
    • /
    • pp.98-105
    • /
    • 2019
  • In the past 30 years, our aviation demand has been growing continuously. As such, the importance of the demand forecasting field is increasing. In this study, the factors influencing Korea's international air demand were selected, and the international air demand was analyzed, forecasted and reviewed through OLS multiple regression analysis. As a result, passenger demand was affected by GDP per capita, oil price and exchange rate, while cargo demand was affected by GDP per capita and private consumption growth rate. In particular, passenger demand was analyzed to be sensitive to temporary external shocks, and cargo demand was more affected by economic variables than temporary external shocks. Demand forecasting, OLS multiple regression analysis, passenger demand, cargo demand, transient external shocks, economic variables.

Korea Reunification and Factor Movement : The Policy for Interregional Balanced Economic Growth (남북통일과 지역균형개발정책)

  • 김홍배;임재영
    • Journal of the Korean Regional Science Association
    • /
    • v.14 no.1
    • /
    • pp.47-64
    • /
    • 1998
  • This paper attempts to forecast regional economic changes and to analyze government polices for interregional balanced economic growth in case of Korea Reunification. It begins with be reunified at the year 2010. The model is largely neoclassical. Since the future of North Korea is unclear, two possible scenarios are presented. The paper projects economic growth of regions, specifically forecasting growth of regions, specifically forecasting GRDP, the number of migrants and the quantity of moving capital. The results obtained show that spatially unbalanced economic growth will take place in the reunified Korea through factor movement. Two polices including public capital provision policy and income subsidy policy are thus suggested and analyed.

  • PDF