• Title/Summary/Keyword: eco-friendly material

Search Result 563, Processing Time 0.028 seconds

Evaluation of the X-ray Shielding Ability of Lead Free Board Shielding in the CT Room (CT실에서 무연보드 차폐체의 X선 차폐능력 평가)

  • Sung-Joon Kim;Tae-Ho Han;Hyo-Won Lee;Yu-Whan Oh;Seung-Chul Kim;Jung-Min Kim
    • Journal of radiological science and technology
    • /
    • v.47 no.4
    • /
    • pp.249-254
    • /
    • 2024
  • This study compared the X-ray shielding abilities of the shields using Computed Radiography(CR) System after manufacturing a lead-free boards using gypsum and BaSO4, an eco-friendly X-ray shielding material. Total six lead-free boards were manufactured with BaSO4 concentrations of 25 %, 50 % and thickness of 10 mm, 15 mm, 20 mm respectively, and additional thickness of 1.0 mm, 1.5 mm, 2.0 mm leads were prepared. In the experiment, Nine shields were placed on the Image Plate and placed in a Computed Tomography(CT) Room where CT scans were performed for 2 weeks. After that, the X-ray image of the shields were obtained through CR Reader, and Pixel Value(PV) were measured to evaluated the X-ray shielding abilities of the lead-free shields. The criterion for evaluating the shields was determined by comparing PV of lead-free board to that of the 1.5 mm thickness lead used in the CT rooms. As a result of the experiment, the PV of the lead-free boards within 25 % of the BaSO4 concentration and within 10 mm of the thickness were not enough to be used as X-ray shields in the CT Room because they did not reach the PV of the 1.5 mm thickness lead. BaSO4 concentration of 50 % at 20 mm thickness showed PV of 1.5 mm lead thickness or more indicating that it has an X-ray shielding ability to replace lead in the CT room

Fabrication of Anisotropic Hexagram Particles by using the Micromolding Technique and Selective Localization of Patch (미세성형 기술과 패치의 선택적 제거방법을 이용한 이방성의 육각별 입자 제조)

  • Shim, Gyurak;Yeom, Su-Jin;Jeong, Seong-Geun;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.105-111
    • /
    • 2018
  • This study presents a novel and eco-friendly process that can precisely control the location of the patches on the patch particles. The method of manufacturing these anisotropic hexagram patch particles consists of sequential combinations of two separate methods such as a sequential micromolding technique for fabricating patch particles and a selective localization method for controlling the location of patches on the patch particles. The micromolding technique was carried out using physicochemically stable material as a micromold. In order to fabricate the highly stable patch anisotropic hexagram particles, the perfluoropolyether (PFPE) micromold was used to the process of the micromolding technique because they could prevent the problem of diffusion of hydrophobic monomers while conventional poly(dimethylsiloxane) (PDMS) micromold is limited to prevent the problem of diffusion of hydrophobic monomers. Based on combination methods of the micromolding technique and the selective localization method, the reproducibility and stability have been improved to fabricate 12 different types of anisotropic hexagram patch particles. This fabrication method shows the unique advantages in eco-friend condition, easy and fast fabrication due to less number of process, the feasibility of a mass production. We believe that these anisotropic hexagram patch particles can be widely utilized to the field of the directional self-assembly.

Optimum Packaging Design of Packaging Tray and Cushion Pad of Korean Pears for Exporting using FEA Simulation (FEA 시뮬레이션 기법을 이용한 수출용 한국 배 포장 트레이 및 완충패드 최적 포장설계)

  • Choi, Dong-Soo;Son, Jae-Yong;Kim, Jin-Se;Kim, Yong-Hoon;Park, Chun-Wan;Jung, Hyun-Mo;Hwang, Sung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.843-852
    • /
    • 2020
  • Among the many packaging materials used in cushion packaging, there is a lack of optimum design for packaging trays and cushion pads used in pear packaging for export and domestic distribution. It causes over-packaging due to excessive material input, and can be solved by applying various parameters needed to optimize the design of the packaging tray and cushion pad considering the packaging material and the number of pears in the box. In the case of a cushion pad for pears, the economic efficiency of material and thickness should be considered. Therefore, it is possible to design a packaging tray and cushion pad depending on eco-friendly packaging materials (PLA, PET) used by applying appropriate design parameters. The static characteristics of the materials used for the packaging of pears were analyzed using FEA (finite element analysis) simulation technique to derive the optimal design parameters. In this study, we analyzed the contact stress and deformation of PET, PLA tray (0.1, 0.5 1.0, 1.5 and 2 mm) and PET foam (2.0, 3 .0 and 4.0 mm) with pears to derive appropriate cushion packaging design factors. The contact stress between the pear and PET foam pad placed on PLA, PET trays were simulated by FEA considering the bioyield strength (192.54±28 kPa) of the pears and safety factor (5) of packaging design, which is the criterion of damage to the pears. For the combination of PET tray and PET foam buffer pad, the thickness of the PET foam is at least 3 mm, the thickness of the PET foam is at least 1.0 mm, the thickness of the foam is at least 2 mm, and if the thickness of the PET tray is at least 1.5 mm, the thickness of the foam is at least 1 mm, suitable for the packaging design. In addition, for the combination of PLA tray and PET foam pad, the thickness of the PET foam was not less than 2 mm if the thickness of the PLA tray was 0.5 mm, and 1 mm or more if the thickness of the PLA tray was not less than 1.0 mm, the thickness of the PET foam was suitable for the packaging design.

Toxicity of Silver Nanoparticles and Application of Natural Products on Fabric and Filters as an Alternative (은나노 입자의 독성 메커니즘 및 천연물을 활용한 은나노 대체 항균 소재 연구)

  • Karadeniz, Fatih;Kim, Han Seong
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.864-873
    • /
    • 2018
  • There has been increasing attention and research in various nanoparticle applications. Nanoparticles have been used for a variety of purposes in different departments including but not limited to cosmetics, food, machinery, and chemical. A highly sought-after field to use nanoparticles, especially natural or artificial silver nanoparticles (SNPs), is the utilization of their significant antimicrobial properties in daily items such as fabrics, indoor air filters, and, water filtration units where abundant bacterial and fungal growth are inevitable. These applications of SNPs, however, have enabled continuous human exposure and hence paved the way for potential SNP toxicity depending on exposure method and particle size. This potential toxicity has led to researches on safer antimicrobial solutions to be utilized in textile and filtration. In this context, products of natural origin have gained expanding interest due to their eco-friendly, cost-effective, and biologically safe properties along their promising antibacterial and antifungal activities. Natural product-applied fabrics and filters have been shown to be comparable to those that are SNP-treated in terms of ease production, material durability, and antimicrobial efficiency. This article summarizes and assesses the current state of in vitro and in vitro toxicity of SNPs and discusses the potential of natural products as an alternative.

Strength Performance Evaluation of Deck Using Reinforced Plastic Connector (강화플라스틱 연결구를 이용한 데크의 내력 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Lee, Dong-Heub;Kim, Kyung-Dae;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.12-18
    • /
    • 2013
  • Existing wood decks brings out negligent accident because fastener can be pulled-out by cyclic load of pedestrians. When deck and joist are connected, it also causes the problems, which are cracking of wood decks and rapid decay by material of fastener. In this study, strength property of deck unit using reinforced plastic connector made by domestic A company was evaluated. Southern yellow pine (Pinus palustris Miller) were used for deck material. Bending strength of deck units were implemented for fastener type and joist spacing (400, 600 mm). In the result, carbon steel screw into reinforced plastic connector was the best in average bending strength(Joist spacing : 400, 600 mm). In the result of bending strength for joist-width (40, 50, 70, 80 mm), the average maximum bending strength was measured when the joist spacing was 40 mm.

Evaluation of Compaction and Thermal Characteristics of Recycled Aggregates for Backfilling Power Transmission Pipeline (송배전관로 되메움재로 활용하기 위한 국내 순환골재의 다짐 및 열적 특성 평가)

  • Wi, Ji-Hae;Hong, Sung-Yun;Lee, Dae-Soo;Park, Sang-Woo;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.7
    • /
    • pp.17-33
    • /
    • 2011
  • Recently, the utilization of recycled aggregates for backfilling a power transmission pipeline trench has been considered due to the issues of eco-friendly construction and a lack of natural aggregate resource. It is important to identify the physical and thermal properties of domestic recycled aggregates that can be used as a backfill material. This paper evaluated thermal properties of concrete-based recycled aggregates with various particle size distributions. The thermal properties of the recycled aggregates and river sand provided by local vendors were measured using the transient hot wire method and the transient needle probe method after performing the standard compaction test. The needle probe method considerably overestimated the thermal resistivity of recycled aggregates especially at the dry of optimum water content because of experiencing disturbance while the needle probe is being inserted into the specimen. Similar to silica sand, the thermal resistivity of recycled aggregates decreased when the water content increased at a given dry density. Also, this paper evaluated some of the existing prediction models for the thermal resistivity of recycled aggregates with the experimental data, and developed a new prediction model for recycled aggregates. This study shows that recycled aggregates can be a promising backfill material substituting for natural aggregates when backfilling the power transmission pipeline trench.

Performance Evaluation of Fiber-Reinforced Concrete Compression Members Transversely Constrained by BFRP (BFRP로 횡구속된 섬유 보강 콘크리트 압축부재의 성능평가)

  • Lee, Gyeong-Bok;Lee, Sang-Moon;Jung, Woo-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.607-616
    • /
    • 2022
  • Corrosion and degradation of reinforced structures due to abnormal climates and natural disasters further accelerate the aging of structures. Coping with the decrease in structure performance, many old structures are being repaired and reinforced with low-weight and high-strength materials such as glass fiber composite material (GFRP). To further contribute, this paper focus on a more economical and eco-friendly material, basalt fiber composite (BFRP), which provide a more effective lateral constraint effect for seismic reinforcement. The main variables considered in this study are the curing temperature during the manufacturing of BFRP and the material characteristics of the target concrete member. The lateral constraint reinforcement effect was investigated through the evaluation of the performance of normal concrete and those with improved durability through fiber reinforcement. The reinforcement effect was 3.15 times for normal concrete and 3.72 times for fiber reinforced concrete, and the difference in reinforcement effect due to the improvement of the durability characteristics of the compression member was not significant. Lastly, the performance of the BFRP was compared with the results of the GFRP reinforcement from the previous study. The effect of the BFRP reinforcement was 1.18 times better than that of the GFRP reinforcement.

Preparation of Natural Wall Paint by Using Sericite Clay (견운모를 이용한 벽마감용 천연페인트 제조)

  • Kim, Munui;Lalhmunsiama, Lalhmunsiama;Lee, Seung-Mok;Jin, Kang-Jung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.501-505
    • /
    • 2017
  • Due to the rapid urbanization and increased population, there is an increase in airtight nature of buildings which causes serious indoor air pollution. Among several indoor air pollutants, volatile organic compounds (VOCs) emitted from paint are of major concern. Therefore, there is an urge for the development of environmental friendly paint products. In this wok, a natural wall paint (NWP) was prepared by utilizing a natural clay material "sericite" as a main component. A small chamber test was carried out to identify the toxic substances release from NWP and the results were compared with two eco-friendly commercial paints. The total VOCs were detected in trace level inside the test chamber and their concentrations were below the recommended indoor air quality standards. Toluene was not detected for NWP, whereas formaldehyde was observed in trace level. The toxicity index results were compared with two commercial paints and found that NWP exhibited less harmful gas emission. Based on certification rating of building materials, NWP can be classified as the first grade of building materials. Due to the above advantages, the use of sericite as a major component in NWP will be a useful technique to maintain the indoor air quality.

Study of Miscibility of Natural Silk by Molecular Dynamics Calculation of Solubility Parameter (용해도 파라미터의 분자동역학 계산을 통한 천연 실크 소재의 혼화성 연구)

  • Im, Keunan;Choi, Kang-min;Leem, Jung Woo;Kim, Young L.;Park, Chi Hoon;Jang, Hae Nam
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.153-159
    • /
    • 2021
  • In recent years, polymer membranes, which are actively used in various industrial fields, have the advantage of being able to impart unique properties through the control of chemical structures and physical properties in the film-fabrication process, as well as through fabricating blend membranes mixed with various materials. In this study, the solubility parameter, which can be used as an index of miscibility with other materials, was calculated using molecular dynamics using a silkworm (Bombyx mori) silk polymer which has a wide potential to be used as an eco-friendly natural material. When the solubility parameter of polyvinylalcohol (PVA), which is also environmentally friendly and biocompatible, was calculated by molecular dynamics and compared with each other, it was confirmed that the two polymer materials had similar solubility parameter values. In conclusion, it was theoretically proved that the two polymers could blend well with each other, which was confirmed through experiments.

A Heat Shock Simulation System for Testing Performance of EWP (EWP 성능 검사를 위한 열 충격 모사시스템)

  • Yoo, Nam-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.553-558
    • /
    • 2019
  • Global auto parts companies are making efforts to develop EWP(: Electric Water Pump) which is one of the core parts of environment friendly car. In eco-friendly automobiles, an independent cooling system is used rather than a cooling system that is linked to an internal combustion engine. Therefore, the research and development of the water pump operating separately from the engine and the related production system are being actively carried out. In order to overcome the shortcoming of EWP of PPS material suitable for injection system, G company which is a global parts company that researches and develops EWP around SUS and is in the process of developing robot-based production equipment for mass production. In this paper, a heat shock simulation system is designed and implemented that works with the robot-based production system to test the performance of the produced EWP. By using this system, it is possible to test the EWP in an virtual environment similar to the actual environment, thereby reducing the defect rate of the product. At the same time, all the data produced during the entire process for testing can be stored, which can be utilized in the future development of CPS(: Cyber Physical System) of EWP system based on big data.