• Title/Summary/Keyword: eco-friendly concrete

Search Result 192, Processing Time 0.026 seconds

Flexural Behavior of Reinforced Concrete Beams mixed with Hwang-toh (황토가 혼입된 철근 콘크리트 보의 휨 거동)

  • Kim, Sung-Bae;Yi, Na-Hyun;Kim, Hyun-Young;Phan, Duc-Hung;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.281-284
    • /
    • 2008
  • Recently, interest in eco-friendly structure has been increased and many researches about hwang-toh are being actively processed. However, most researches are about material properties of hwang-toh, and researches about structural performance are insufficient. Moreover, the usability of activated hwang-toh is being identified in some ways, but its use rate is low in economic aspect in reality. Non-activated hwang-toh is expected to be advantageous in respect of economy but its material and structural performance have not been identified. Therefore, the effect of activated hwang-toh and non-activated hwang-toh on flexural capacity of hwang-toh concrete beam is analyzed in this research.

  • PDF

An Experimental Study on the Mechanical Properties of Concrete with the Contents of Recycled coarse Aggregate (재생 굵은 골재를 사용한 재생 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 김호수;백철우;반성수;최성우;류득현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.25-30
    • /
    • 2003
  • Owing to the deterioration of reconstruction and the construction, much of the construction waste is discharged in our construction field. By supplementing aggregate resources that are insufficient by recycling waste concrete, it is considered that the resource-preserving effect according to the saving and reuse of resource as well as eco-friendly effect that is regarded as important in recent industrial society may be expected. In this study conducted an experiment by setting up 15 levels according to the variations in the rate of substitution of recycled coarse aggregate by the water cement ratio(40, 50, 60%). As the result of it, the slump and air contents was increased by ratio of coarse aggregate, and the elapsed characteristics by the ratio of recycled coarse aggregate showed that there is no clear difference in slump and the air contents. Further, in the characteristics of strength development, the lower the water cement ratio, the higher the compressive strength at early ages, compared with crushed stone, while the compression declined according to the increase of substitution rate of recycled gravel as it was tending upward long-term ages.

  • PDF

Applications and Analysis of Exterior Paints for the Curtain Wall Panel System based on the Autoclaved Lightweight Concrete(ALC) (경량기포콘크리트(ALC) 패널을 건축물 외장 커튼월에 적용을 위한 도료의 기초적 연구)

  • Lee, Yong-Soo;La, Hyun-Ju
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.3
    • /
    • pp.59-66
    • /
    • 2012
  • Autoclaved Lightweight Concrete(ALC) features such as a high performance insulation, the fire resistance, the advantage of easy handing construction, and lightweight panels applied the curtain wall system. ALC materials are certified as non-toxic environmental and eco-friendly productions. But ALC external panels mixed with blast furnace slag pounder and silica fume have to be coated with a stucco compound or plaster because of resisting the ambient environment. This study is that mixing tests to evaluate a performance analysis of exterior paints to be make-up pigments(organic or inorganic) coated with panel surface. Testing compared by KS F 2476; flow test, KS F 2426; compression strength test, KS F 2762; bond strength test. In results, the case of the inorganic binder, ratio of alumina cement : anhydrite is 90:10 to 80:20 at the highest level of intensity. In the case of the organic binder, adhesive strength rating at surface of ALC, the pullout strength is below 0.5 $N/mm^2$ but the normal concrete is over 2.0$N/mm^2$. A contents ratio of EVA resin is more than 3% and then bond strength is effectively.

Parametric study of shear capacity of beams having GFRP reinforcement

  • Vora, Tarak P.;Shah, Bharat J.
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.183-190
    • /
    • 2022
  • A wide range of experimental bases and improved performance with different forms of Fiber Reinforced Polymer (FRP) have attracted researchers to produce eco-friendly and sustainable structures. The reinforced concrete (RC) beam's shear capacity has remained a complex phenomenon because of various parameters affecting. Design recommendations for the shear capacity of RC elements having FRP reinforcement need a more experimental database to improve design recommendations because almost all the recommendations replace different parameters with FRP's. Steel and FRP are fundamentally different materials. One is ductile and isotropic, whereas the other is brittle and orthotropic. This paper presents experimental results of the investigation on the beams with glass fiber reinforced polymer (GFRP) reinforcement as longitudinal bars and stirrups. Total twelve beams with GFRP reinforcement were prepared and tested. The cross-section of the beams was rectangular of size 230 × 300 mm, and the total length was 2000 mm with a span of 1800 mm. The beams are designed for simply-supported conditions with the two-point load as per specified load positions for different beams. Flexural reinforcement provided is for the balanced conditions as the beams were supposed to test for shear. Two main variables, such as shear span and spacing of stirrups, were incorporated. The beams were designed as per American Concrete Institute (ACI) ACI 440.1R-15. Relation of VExp./VPred. is derived with axial stiffness, span to depth ratio, and stirrups spacing, from which it is observed that current design provisions provide overestimation, particularly at lower stirrups spacing.

Mechanical and durability of geopolymer concrete containing fibers and recycled aggregate

  • Abdelaziz Yousuf, Mohamed;Orhan, Canpolat;Mukhallad M., Al-Mashhadani
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.421-432
    • /
    • 2022
  • Recently, the interminable ozone depletion and the global warming concerns has led to construction industries to seek for construction materials which are eco-friendly. Regarding this, Geopolymer Concrete (GPC) is getting great interest from researchers and scientists, since it can operate by-product waste to replace cement which can lead to the reduction of greenhouse gas emission through its production. Also, compared to ordinary concrete, geopolymer concrete belongs improved mechanical and durability properties. In spite of its positive properties, the practical use of geopolymer concrete is currently limited. This is primarily owing to the scarce structural, design and application knowledge. This study investigates the Mechanical and Durability of Geopolymer Concrete Containing Fibers and Recycled Aggregate. Mixtures of elastoplastic fiber reinforced geopolymer concrete with partial replacement of recycled coarse aggregate in different proportions of 10, 20, 30, and 40% with natural aggregate were fabricated. On the other hand, geopolymer concrete of 100% natural aggregate was prepared as a control specimen. To consider both strength and durability properties and to evaluate the combined effect of recycled coarse aggregate and elastoplastic fiber, an elastoplastic fiber with the ratio of 0.4% and 0.8% were incorporated. The highest compressive strength achieved was 35 MPa when the incorporation of recycled aggregates was 10% with the inclusion of 0.4% elastoplastic fiber. From the result, it was noticed that incorporation of 10% recycled aggregate with 0.8% of the elastoplastic fiber is the perfect combination that can give a GPC having enhanced tensile strength. When specimens exposed to freezing-thawing condition, the physical appearance, compressive strength, weight loss, and ultrasonic pulse velocity of the samples was investigated. In general, all specimens tested performed resistance to freezing thawing. the obtained results indicated that combination of recycled aggregate and elastoplastic fiber up to some extent could be achieved a geopolymer concrete that can replace conventional concrete.

Shear and Bond Strength of Activated Hwangtoh Concrete Beam (활성 황토 콘크리트 보의 전단 및 부착 강도)

  • Lee, Nam-Kon;Park, Hong-Gun;Hwang, Hye-Zoo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.685-694
    • /
    • 2010
  • As a eco-friendly material, Hwangtoh (red clay) has been studied for complete or partial replacement of portland cement. Most of existing studies focused on the material properties of the Hwangtoh concrete including the compressive strength, drying shringkage, and creep. In the present study, the shear strength of the beams made with the Hwangtoh concrete was tested. Further, bond strength of tension re-bars embedded in the Hwangtoh concrete was tested. One of the concrete tested consisted of activated Hwangtoh replacing 20% of the cement. The other consisted 100% activated. Hwangtoh replacing all the cement. The beam specimens were tested under two point static loading. The test result showed that the shear strength of activated Hwangtoh concrete beams replacing 20% and 100% of cement was equivalent to that of the ordinary portland cement concrete beam. However, the bond strength of activated Hwangtoh concrete replacing 100% of the cement was less than that of the ordinary portland cement concrete.

A Study on the Implementation of Eco-friendly Green IT-based Libraries (그린 IT기반 도서관의 친환경성 구현에 관한 연구)

  • Noh, Younghee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.54 no.2
    • /
    • pp.5-28
    • /
    • 2020
  • This study was conducted to discuss concrete ways to contribute to the sustainability of the planet by actively applying and using digital and IT resources in libraries. To this end, a survey was conducted for librarians of public libraries, and the results were as follows. First, librarians' awareness of the seriousness of environmental problems and the degree of eco-friendly activities were very high, but their awareness of library green IT and familiarity with eco-related terms were very low. Nevertheless, there was a high degree of agreement on the importance of applying green IT to libraries. Second, the areas evaluated as having the highest contribution to eco-friendliness and greening of the library were found in the equipment and product operation area, followed by the service area and the network and system area. Third, how do you think library green IT will have a social impact? The highest opinion was given that it could increase the awareness of the library's social responsibility as a social infrastructure. In conclusion, it seems that the library's green IT can contribute to improving library perception by making the public perceived as an institution that has a social responsibility as a social infrastructure.

Shear strengthening of RC beams with Basalt Fiber Reinforced Polymer (BFRP) composites

  • Kar, S.;Biswal, K.C.
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.93-104
    • /
    • 2020
  • Basalt fiber is an eco-friendly fiber and comparatively newer to the world of fiber-reinforced polymer (FRP) composites. A limited number of studies have been reported in the literature on the strengthening of reinforced concrete (RC) beams with basalt fiber reinforced polymer (BFRP). The present experimental work explores the feasibility of using the BFRP strips for shear strengthening of the RC beams. The strengthening schemes include full wrap and U-wrap. A simple mechanical anchorage scheme has been introduced to prevent the debonding of U-wrap as well as to utilize the full capacity of the BFRP composite. The effect of varying shear span-to-effective depth (a/d) ratio on the behavior of shear deficient RC beams strengthened with BFRP strips under different schemes is examined. The RC beams were tested under a four-point loading system. The study finds that the beams strengthened with and without BFRP strips fails in shear for a/d ratio 2.5 and the enhancement of the shear capacity of strengthened beams ranges from 5% to 20%. However, the strengthened beams fail in flexure, and the control beam fails in shear for a higher a/d ratio, i.e., 3.5. The experimental results of the present study have been compared with the analytical study and found that the latter gives conservative results.

Banana agriculture waste as eco-friendly material in fibre-reinforced concrete: An experimental study

  • Mohammed M., Attia;Abd Al-Kader A., Al Sayed;Bassam A., Tayeh;Shymaa M.M., Shawky
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.355-368
    • /
    • 2022
  • This paper investigates the impact of length and volume fractions (VFs) of banana fibres (BFs) on the mechanical and physical properties of concrete. The mechanical properties were compressive strength, splitting tensile, flexural strength, and bond stress, while the physical properties were unit weight and absorption. The slump test was used to determine workability. The concrete's behaviour with BFs was studied using scanning electron microscopy. Experimental work of concrete mixtures with BFs of various lengths (12 mm, 25 mm, and 35 mm) and VFs (0%, 0.5%, 1.0%, and 1.5%) were carried out. The samples did not indicate any agglomeration of fibres or heterogeneity during mixing. The addition of BFs to concrete with VFs of up to 1.50% for all fibre lengths have a significant impact on mechanical properties, also the longer fibres performed better than shorter ones at all volume fractions of BFs. The mix10, which contain BFs with VFs 1.5% and length 35 mm, demonstrated the highest mechanical properties. The compressive strength, splitting tensile, flexural strength, and bond stress of the mix10 were 37.71 MPa, 4.27 Mpa, 6.12 MPa, and 6.75 MPa, an increase of 7.37%, 20.96%, 24.13%, and 11.2% over the reference concrete, which was 35.12 MPa, 3.53 MPa, 4.93 MPa, and 6.07 MP, respectively. The absorption is increased for all lengths by increasing the VFs up to 1.5%. Longer fibres have lower absorption, while shorter fibres have higher absorption. The mix8 had the highest absorption of 4.52%, compared to 3.12% for the control mix. Furthermore, the microstructure of concrete was improved through improved bonding between the fibres and the matrix, which resulted in improved mechanical properties of the composite.

Stabilization Mechanism for Sands Treated with Organic Acids from Laboratory Tests (유기산 재료를 이용한 사질토의 안정화 메커니즘에 관한 연구)

  • Ki, Jungsu;Yee, Eric;Lee, Jonghwi;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.6
    • /
    • pp.39-46
    • /
    • 2013
  • The field of ground amelioration, many construction methods have been developed more prosperously up to now, but even now, the majority focuses on the improvement of ground strength. And they could not suggest concrete solutions to the occurrence of environmental issues. To address this problem, soil improvement methods employing organic acid materials have recently been developed as eco-friendly technologies for increasing the soil strength, but details regarding the basic stabilization mechanism are not known yet. Against this background, this research was conducted to examine the soil stabilization mechanism; for this purpose, unconfined compressive strength and pH tests were conducted by using an improved eco-friendly organic acid material. The test results revealed that the samples processed with the organic acid showed a considerable increase in the unconfined compressive strength over time as compared to the strength of the samples that were processed without the organic acid. It was also confirmed that the organic acid material promoted microbial breeding and improved the soil structure by reducing the volume of the voids in the soil. Therefore, the sustainable development of this method needs to be analysed more in the future.