• Title/Summary/Keyword: eccentric openings

Search Result 8, Processing Time 0.019 seconds

Experimental investigation of infilled r/c frames with eccentric openings

  • Kakaletsis, D.;Karayannis, C.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.231-250
    • /
    • 2007
  • The influence of masonry infills with eccentric openings on the seismic performance of reinforced concrete (r/c) frames that were designed in accordance with current code provisions are investigated. Eight 1/3-scale, single-story, single-bay frame specimens were tested under cyclic horizontal loading up to a drift level of 4%. In all examined cases the shear strength of columns was higher than the cracking shear strength of solid infill. The parameters investigated include the shape and the location of the opening. Assessment of the behavior of the frames is also attempted, based on the observed failure modes, strength, stiffness, ductility, energy dissipation capacity and degradation from cycling loading. Based on these results there can be deduced that masonry infills with eccentrically located openings has been proven to be beneficial to the seismic capacity of the bare r/c frames in terms of strength, stiffness, ductility and energy dissipation. The location of the opening must be as near to the edge of the infill as possible in order to provide an improvement in the performance of the infilled frame.

Investigation of the shear behaviour of multi-story reinforced concrete walls with eccentric openings

  • Taleb, Rafik;Bechtoula, Hakim;Sakashita, Masanubo;Bourahla, Noureddine;Kono, Susumu
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.361-377
    • /
    • 2012
  • Four Reinforced Concrete (RC) single span structural walls having various opening sizes and locations were constructed and tested under lateral reversed cyclic loading at the structural laboratory of Kyoto University. These specimens were scaled to 40% and represented the lower three stories of a six-storied RC building. The main purposes of the experimental tests were to evaluate the shear behavior and to identify the influence of opening ratios on the cracks distribution and shear strength of RC structural walls. The shear strength of the specimens was estimated by combining the shear strength of structural wall without openings and the reduction factor that takes into account the openings. Experimental and analytical results showed that the shear strength was different depending on the loading direction due to opening locations. A two-dimensional finite element analysis was carried out to simulate the performance of the tested specimens. The constructed finite elements model simulated the lateral load-drift angle relations quite well.

An Experimental Study on the Ultimate Strength and Deformation Capacity of Composite Beams with Eccentric Web Openings (편심유공합성보의 종국내력 및 변형능력에 관한 실험적 연구)

  • Choi, San Ho;Seo, Seong Yeon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.595-604
    • /
    • 2000
  • Web openings of large beams provide space for wiring, piping, and duct work to provide for proper drainage, pipes and duct must be slightly sloped with the attendant result that all web openings can not be centered on the centroidal axes of the beams. Test specimens are made for opening-depth to beam-depth ratio of 0.5 and for eccentricities of the opening center line of 10% from middepth of the beam because of the proximity of the opening edge to the flange. In this paper, available test results and theories relating to the strength of composite beams having eccentric rectangular openings are surveyed and experiments were carried out to examine the structural behaviors. In all the tests in this paper good agreement is demonstrated with maximum loads measured in tests, and observed failure modes Furthermore, compared with analytical values and experimental values of interaction diagram between moment and shear capacity were safed as it is scattered with outer part of the analytical values.

  • PDF

Cyclic Local Buckling Behavior of Steel Members with Web Opening (유공 강구조 부재의 반복 국부좌굴거동)

  • Lee, EunTaik;Ko, KaYeon;Kang, JaeHoon;Chang, KyoungHo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.423-433
    • /
    • 2003
  • Many study have been performed to describe the elastic and inelastic behavior of H-shaped beams with web openings that generally concentrated on the monotonic loading condition and concentric web opening. The findings of the studies led Darwin to propose formulas for the design of beams with web openings considering local buckling. While the formulas are simple and useful in real situation, more studies arc needed on their cyclic loading condition. In this experimental study, 12 H-shaped beams with web openings under cyclic loading condition were investigated. The dimension criteria based on the formulas proposed by Darwin were examined. The suitability of existing design formulas and the effects of plastic hinges on beams with web openings and of local buckling around web openings on the beam strength under cyclic loading were also studied. This was done by observing their behavior with various dimensional openings, eccentric per cent, and stiffeners.

Evaluation of cyclic behavior of lateral load resisting system with eccentric brace and steel plate

  • Reza Khalili Sarbangoli;Ahmad Maleki;Ramin K. Badri
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.239-252
    • /
    • 2024
  • Steel plate shear walls (SPSWs) are classified as lateral load-resisting systems. The feasibility of openings in the steel plate is a characteristic of SPSWs. The use of openings in SPSWs can lower the load capacity, stiffness, and energy dissipation. This study proposes a novel form of SPSWs that provides convenient access through openings by combining steel plates and eccentrically braced frames (EBFs). The proposed system also avoids a substantial reduction in the strength and stiffness. Hence, various geometric forms were analyzed through two different structural approaches. Groups 1, 2, and 3 included a steel EBF with a steel plate between the column and EBF in order to improve system performance. In Group 4, the proposed system was evaluated within an SPSW with openings and an EBF on the opening edge. To evaluate the performance of the proposed systems, the nonlinear finite element method (NL-FEM) was employed under cyclic loading. The hysteresis (load-drift) curve, stress contour, stiffness, and damping were evaluated as the structural outputs. The numerical models indicated that local buckling within the middle plate-EBF connection prevented a diagonal tension field. Moreover, in group 4, the EBF and stiffeners on the opening edge enhanced the structural response by approximately 7.5% in comparison with the base SPSW system.

Direct displacement-based seismic design methodology for the hybrid system of BRBFE and self-centering frame

  • Akbar Nikzad;Alireza Kiani;Seyed Alireza Kazerounian
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.463-480
    • /
    • 2023
  • The buckling-restrained braced frames with eccentric configurations (BRBF-Es) exhibit stable cyclic behavior and possess a high energy absorption capacity. Additionally, they offer architectural advantages for incorporating openings, much like Eccentrically Braced Frames (EBFs). However, studies have indicated that significant residual drifts occur in this system when subjected to earthquakes at the Maximum Considered Earthquake (MCE) hazard level. Consequently, in order to mitigate these residual drifts, it is recommended to employ self-centering systems alongside the BRBF-E system. In our current research, we propose the utilization of the Direct Displacement-Based Seismic Design method to determine the design base shear for a hybrid system that combines BRBF with an eccentric configuration and a self-centering frame. Furthermore, we present a methodology for designing the individual components of this composite system. To assess the effectiveness of this design approach, we designed 3-, 6-, and 9-story buildings equipped with the BRBF-E-SCF system and developed finite element models. These models were subjected to two sets of ground motions representing the Maximum Considered Earthquake (MCE) and Design Basis Earthquake (DBE) seismic hazard levels. The results of our study reveal that although the combined system requires a higher amount of steel material compared to the BRBF-E system, it substantially reduces residual drift. Furthermore, the combined system demonstrates satisfactory performance in terms of story drift and ductility demand.

Performance-based plastic design of buckling-restrained braced frames with eccentric configurations

  • Elnaz Zare;Mohammad Gholami;Esmail Usefvand;Mojtaba Gorji Azandariani
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.317-331
    • /
    • 2023
  • The buckling-restrained braced frames with eccentric configurations (BRBFECs) are stable cyclic behavior and high energy absorption capacity. Furthermore, they have an architectural advantage for creating openings like eccentrically braced frames (EBFs). In the present study, it has been suggested to use the performance-based plastic design (PBPD) method to calculate the design base shear of the BRBFEC systems. Moreover, in this study, to reduce the required steel material, it has been suggested to use the performance-based practical design (PBPD) method instead of the force-based design (FBD) method for the design of this system. The 3-, 6-, and 9-story buildings with the BRBFEC system were designed, and the finite element models were modeled. The seismic performance of the models was investigated using two suits of ground motions representing the maximum considered earthquake (MCE) and design basis earthquake (DBE) seismic hazard levels. The results showed that the models designed with the suggested method, which had lower weights compared to those designed with the FBD method, had a desirable seismic performance in terms of maximum story drift and ductility demand under earthquakes at both MCE and DBE seismic hazard levels. This suggests that the steel weights of the structures designed with the PBPD method are about 13% to 18% lesser than the FBD method. However, the residual drifts in these models were higher than those in the models designed with the FBD method. Also, in earthquakes at the DBE hazard level, the residual drifts in all models except the PBPD-6s and PBPD-9s models were less than the allowable reparability limit.

Studies on the Performance of a Cam Driving Electronic Expansion Valve for Vehicles (캠구동 방식을 적용한 자동차 공조시스템용 전자팽창밸브의 성능에 관한 연구)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.732-736
    • /
    • 2016
  • Air conditioning part designs are moving towards higher efficiency and productivity. The expansion device is one of the core parts of an air conditioning system and controls the refrigerant quantity, evaporation load, compression capacity, and condensation capacity. In this study, an electronic expansion valve for two working fluids ($CO_2$ and R134a) was developed for air conditioning systems in vehicles. The valve uses an eccentric cam driving structure instead of a lead screw to decrease manufacturing costs and increase productivity. The pressure resistance and flow rate performance was evaluated using numerical analysis. At maximum operation conditions and burst pressure conditions with $CO_2$, the maximum stresses on the valve model were about 98 MPa and 223 MPa, respectively. The maximum flow rates of $CO_2$ and R134a with different orifice openings were about 550 kg/h and 386 kg/h, respectively. The performance with R134a was verified by experiments.