• Title/Summary/Keyword: eccentric compression performance

Search Result 22, Processing Time 0.02 seconds

Mechanical behaviour of composite columns composed of RAC-filled square steel tube and profile steel under eccentric compression loads

  • Ma, Hui;Xi, Jiacheng;Zhao, Yaoli;Dong, Jikun
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.103-120
    • /
    • 2021
  • This research examines the eccentric compression performance of composite columns composed of recycled aggregate concrete (RAC)-filled square steel tube and profile steel. A total of 17 specimens on the composite columns with different recycled coarse aggregate (RCA) replacement percentage, RAC strength, width to thickness ratio of square steel tube, profile steel ratio, eccentricity and slenderness ratio were subjected to eccentric compression tests. The failure process and characteristic of specimens under eccentric compression loading were observed in detail. The load-lateral deflection curves, load-train curves and strain distribution on the cross section of the composite columns were also obtained and described on the basis of test data. Results corroborate that the failure characteristics and modes of the specimens with different design parameters were basically similar under eccentric compression loads. The compression side of square steel tube yields first, followed by the compression side of profile steel. Finally, the RAC in the columns was crushed and the apparent local bulging of square steel tube was also observed, which meant that the composite column was damaged and failed. The composite columns under eccentric compression loading suffered from typical bending failure. Moreover, the eccentric bearing capacity and deformation of the specimens decreased as the RCA replacement percentage and width to thickness ratio of square steel tube increased, respectively. Slenderness ratio and eccentricity had a significantly adverse effect on the eccentric compression performance of composite columns. But overall, the composite columns generally had high-bearing capacity and good deformation. Meanwhile, the mechanism of the composite columns under eccentric compression loads was also analysed in detail, and the calculation formulas on the eccentric compression capacity of composite columns were proposed via the limit equilibrium analysis method. The calculation results of the eccentric compression capacity of columns are consistent with the test results, which verify the validity of the formulas, and the conclusions can serve as references for the engineering application of this kind of composite columns.

Numerical analysis and eccentric bearing capacity of steel reinforced recycled concrete filled circular steel tube columns

  • Ma, Hui;Liu, Fangda;Wu, Yanan;Cui, Hang;Zhao, Yanli
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.163-181
    • /
    • 2022
  • To study the mechanical properties of steel reinforced recycled concrete (SRRC) filled circular steel tube columns under eccentric compression loads, this study presents a finite element model which can simulate the eccentrically compressed columns using ABAQUS software. The analytical model was established by selecting the reasonable nonlinear analysis theory and the constitutive relationship of materials in the columns. The influences of design parameters on the eccentric compressive performance of columns were also considered in detail, such as the diameter-thickness ratio of circular steel tube, replacement percentage of recycled coarse aggregate (RCA), slenderness ratio, eccentricity, recycled aggregate concrete (RAC) strength and steel strength and so on. The deformation diagram, stress nephogram and load-displacement curves of the eccentrically compressed columns were obtained and compared with the test results of specimens. The results show that although there is a certain error between the calculation results and the test results, the error is small, which shows the rationality on the numerical model of eccentrically compressed columns. The failure of the columns is mainly due to the symmetrical bending of the columns towards the middle compression zone, which is a typical compression bending failure. The eccentric bearing capacity and deformation capacity of columns increase with the increase of the strength of steel tube and profile steel respectively. Compared with profile steel, the strength of steel tube has a greater influence on the eccentric compressive performance of columns. Improving the strength of RAC is beneficial to the eccentric bearing capacity of columns. In addition, the eccentric bearing capacity and deformation capacity of columns decrease with the increase of replacement percentage of RCA. The section form of profile steel has little influence on the eccentric compression performance of columns. On this basis, the calculation formulas on the nominal eccentric bearing capacity of columns were also put forward and the results calculated by the proposed formulas are in good agreement with the test values.

Research on eccentric compression of ultra-high performance fiber reinforced concrete columns

  • Ma, Kaize;Ma, Yudong;Liu, Boquan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.211-221
    • /
    • 2019
  • To study the eccentric compression behavior of ultra-high performance fiber reinforced concrete (UHPFRC) columns, six UHPFRC columns and one high-strength concrete (HSC) column were tested. Variation parameters include load eccentricity, volume of steel fibers and stirrup ratio. The crack pattern, failure mode, bearing capacity, and deformation of the specimens were studied. The results showed that the UHPFRC columns had different failure modes. The large eccentric compression failure mode was the longitudinal tensile reinforcements yielded and many horizontal cracks appeared in the tension zone. The small eccentric compression failure mode was the longitudinal compressive reinforcements yielded and vertical cracks appeared in the compressive zone. Because of the bridging effect of steel fibers, the number of cracks significantly increased, and the width of cracks decreased. The load-deflection curves of the UHPFRC columns showed gradually descending without sudden dropping, indicating that the specimens had better deformation. The finite element (FE) analysis was performed to stimulate the damage process of the specimens with monotonic loading. The concrete damaged plasticity (CDP) model was adopted to characterize the behaviour of UHPFRC. The contribution of the UHPFRC tensile strength was considered in the bearing capacity, and the theoretical calculation formulas were derived. The theoretical calculation results were consistent with the test results. This research can provide the experimental and theoretical basis for UHPFRC columns in engineering applications.

Experimental and finite element analyses of eccentric compression of basalt-fiber reinforced recycled aggregate concrete-filled circular steel tubular stub column

  • Zhang, Xianggang;Zhang, Songpeng;Yang, Junna;Chen, Xu;Zhou, Gaoqiang
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.617-631
    • /
    • 2022
  • To study the eccentric compressive performance of the basalt-fiber reinforced recycled aggregate concrete (BFRRAC)-filled circular steel tubular stub column, 8 specimens with different replacement ratios of recycled coarse aggregate (RCA), basalt fiber (BF) dosage, strength grade of recycled aggregate concrete (RAC) and eccentricity were tested under eccentric static loading. The failure mode of the specimens was observed, and the relationship curves during the entire loading process were obtained. Further, the load-lateral displacement curve was simulated and verified. The influence of the different parameters on the peak bearing capacity of the specimens was analyzed, and the finite element analysis model was established under eccentric compression. Further, the design-calculation method of the eccentric bearing capacity for the specimens was suggested. It was observed that the strength failure is the ultimate point during the eccentric compression of the BFRRAC-filled circular steel tubular stub column. The shape of the load-lateral deflection curves of all specimens was similar. After the peak load was reached, the lateral deflection in the column was rapidly increased. The peak bearing capacity decreased on enhancing the replacement ratio or eccentric distance, while the core RAC strength exhibited the opposite behavior. The ultimate bearing capacity of the BFRRAC-filled circular steel tubular stub column under eccentric compression calculated based on the limit analysis theory was in good agreement with the experimental values. Further, the finite element model of the eccentric compression of the BFRRAC-filled circular steel tubular stub column could effectively analyze the eccentric mechanical properties.

Buckling Experiment of Eccentric Seismic Bracing Devices for Branch Lines (내진설계용 편심방식 가지배관 고정장치의 좌굴 실험)

  • Changsoo, Oh;Jihoon, Kim;Hasung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.9-14
    • /
    • 2024
  • Restraints of Branch Lines are used as earthquake-resistant support devices for fire-fighting pipes along with sway brace devices. The central types are aligned and fixed in a straight line with center of the pipe, but the eccentric types are fixed to on side of the pipe, so a bending moment occurs. In this study, three specimens each of central type and eccentric type were installed at an angle of 45° from the vertical and a monotonic compression load of 1340N was applied. All central type samples satisfied 17.8mm of the allowable displacement, but all eccentric type samples failed to meet the target load and buckled. Therefore, when considering the performance of eccentric type restraints, both compressive load and bending moment must be considered. Even through material mechanics calculations, the yield stress of eccentric type - 3/8 inch all threaded steel bolt - exceeds 320Mpa of the allowable stress. A experiment standards need to be established for eccentric type restraints.

Buckling analysis of elastically-restrained steel plates under eccentric compression

  • Qin, Ying;Shu, Gan-Ping;Du, Er-Feng;Lu, Rui-Hua
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.379-389
    • /
    • 2018
  • In this research, the explicit closed-form local buckling solution of steel plates in contact with concrete, with both loaded and unloaded edges elastically restrained against rotation and subjected to eccentric compression is presented. The Rayleigh-Rize approach is applied to establish the eigenvalue problem for the local buckling performance. Buckling shape which combines trigonometric and biquadratic functions is introduced according to that used by Qin et al. (2017) on steel plate buckling under uniform compression. Explicit solutions for predicting the local buckling stress of steel plate are obtained in terms of the rotational stiffness. Based on different boundary conditions, simply yet explicit local buckling solutions are discussed in details. The proposed formulas are validated against previous research and finite element results. The influences of the loading stress gradient parameter, the aspect ratio, and the rotational stiffness on the local buckling stress resultants of steel plates with different boundary conditions were evaluated. This work can be considered as an alternative to apply a different buckling shape function to study the buckling problem of steel plate under eccentric compression comparing to the work by Qin et al. (2018), and the results are found to be in consistent with those in Qin et al. (2018).

Effect of bond slip on the performance of FRP reinforced concrete columns under eccentric loading

  • Zhu, Chunyang;Sun, Li;Wang, Ke;Yuan, Yue;Wei, Minghai
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.73-83
    • /
    • 2019
  • Concrete reinforced with fiber reinforced polymer (FRP) bars (FRP-RC) has attracted a significant amount of research attention in the last three decades. A limited number of studies, however, have investigated the effect of bond slip on the performance of FRP-RC columns under eccentric loading. Based on previous experimental study, a finite-element model of eccentrically loaded FRP-RC columns was established in this study. The bondslip behavior was modeled by inserting spring elements between FRP bars and concrete. The improved Bertero-Popov-Eligehausen (BPE) bond slip model with the results of existing FRP-RC pullout tests was introduced. The effect of bond slip on the entire compression-bending process of FRP-RC columns was investigated parametrically. The results show that the initial stiffness of bond slip is the most sensitive parameter affecting the compression-bending performance of columns. The peak bond stress and the corresponding peak slip produce a small effect on the maximum loading capacity of columns. The bondslip softening has little effect on the compression-bending performance of columns. The sectional analysis revealed that, as the load eccentricity and the FRP bar diameter increase, the reducing effect of bond slip on the flexural capacity becomes more obvious. With regard to bond slip, the axial-force-bending-moment (P-M) interaction diagrams of columns with different FRP bar diameters show consistent trends. It can be concluded from this study that for columns reinforced with large diameter FRP bars, the flexural capacity of columns at low axial load levels will be seriously overestimated if the bond slip is not considered.

A Performance Simulation for Spark Ignition Wankel Rotary Engine (불꽃점화 반켈 로터리 기관의 성능 시뮬레이션)

  • 채재우;이상만;전영남;김규정;정영식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.80-89
    • /
    • 1993
  • Performance simulation for a Spark Ignition Wankel rotary Engine is presented in this paper. The volume of chamber at each eccentric shaft angle is evaluated by using geometric models of housing and rotor. A thermodynamic model which includes the first law of thermodynamics, combustion and convective heat transfer from chamber contents to surroundings is imployed. A thermochemical equilibrium model which considers 10 species(CO, $CO_2$, $O_2$, $H_2$, $H_2O$, OH, O, NO, $N_2$) in the burned gas region, is also employed. Four processes of gas exchange, compression, combustion and expansion are considered and the pressure, temperature and composition of chamber gas at each eccentric shaft angle in each process are computed in this performance simulation. This performance simulation must be useful for optimal design of Spark Ignition Wankel Rotray Engine with parametric study for various design parameters and operating conditions.

  • PDF

A robust approach in prediction of RCFST columns using machine learning algorithm

  • Van-Thanh Pham;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.153-173
    • /
    • 2023
  • Rectangular concrete-filled steel tubular (RCFST) column, a type of concrete-filled steel tubular (CFST), is widely used in compression members of structures because of its advantages. This paper proposes a robust machine learning-based framework for predicting the ultimate compressive strength of RCFST columns under both concentric and eccentric loading. The gradient boosting neural network (GBNN), an efficient and up-to-date ML algorithm, is utilized for developing a predictive model in the proposed framework. A total of 890 experimental data of RCFST columns, which is categorized into two datasets of concentric and eccentric compression, is carefully collected to serve as training and testing purposes. The accuracy of the proposed model is demonstrated by comparing its performance with seven state-of-the-art machine learning methods including decision tree (DT), random forest (RF), support vector machines (SVM), deep learning (DL), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and categorical gradient boosting (CatBoost). Four available design codes, including the European (EC4), American concrete institute (ACI), American institute of steel construction (AISC), and Australian/New Zealand (AS/NZS) are refereed in another comparison. The results demonstrate that the proposed GBNN method is a robust and powerful approach to obtain the ultimate strength of RCFST columns.

Post-fire test of precast steel reinforced concrete stub columns under eccentric compression

  • Yang, Yong;Xue, Yicong;Yu, Yunlong;Gong, Zhichao
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.111-122
    • /
    • 2019
  • This paper presents an experimental work on the post-fire behavior of two kinds of innovative composite stub columns under eccentric compression. The partially precast steel reinforced concrete (PPSRC) column is composed of a precast outer-part cast using steel fiber reinforced reactive powder concrete (RPC) and a cast-in-place inner-part cast using conventional concrete. Based on the PPSRC column, the hollow precast steel reinforced concrete (HPSRC) column has a hollow column core. With the aim to investigate the post-fire performance of these composite columns, six stub column specimens, including three HPSRC stub columns and three PPSRC stub columns, were exposed to the ISO834 standard fire. Then, the cooling specimens and a control specimen unexposed to fire were eccentrically loaded to explore the residual capacity. The test parameters include the section shape, concrete strength of inner-part, eccentricity ratio and heating time. The test results indicated that the precast RPC shell could effectively confine the steel shape and longitudinal reinforcements after fire, and the PPSRC stub columns experienced lower core temperature in fire and exhibited higher post-fire residual strength as compared with the HPSRC stub columns due to the insulating effect of core concrete. The residual capacity increased with the increasing of inner concrete strength and with the decreasing of heating time and load eccentricity. Based on the test results, a FEA model was established to simulate the temperature field of test specimens, and the predicted results agreed well with the test results.