• Title/Summary/Keyword: eaves joint

Search Result 3, Processing Time 0.021 seconds

F. E.-assisted design of the eaves bracket of a cold-formed steel portal frame

  • Lim, J.B.P.;Nethercot, D.A.
    • Steel and Composite Structures
    • /
    • v.2 no.6
    • /
    • pp.411-428
    • /
    • 2002
  • Non-linear large-displacement elasto-plastic finite element analyses are used to propose design recommendations for the eaves bracket of a cold-formed steel portal frame. Owing to the thinness of the sheet steel used for the brackets, such a structural design problem is not trivial as the brackets need to be designed against failure through buckling; without availability of the finite element method, expensive laboratory testing would therefore be required. In this paper, the finite element method is firstly used to predict the plastic moment capacity of the eaves bracket. Parametric studies are then used to propose design recommendations for the eaves bracket against two potential buckling modes of failure: (1) buckling of the stiffened free-edge into one-half sine wave, (2) local plate buckling of the exposed triangular bracket area.The results of full-scale laboratory tests on selected geometries of eaves bracket demonstrate that the proposed design recommendations are conservative. The use of the finite element method in this way exploits modern computational techniques for an otherwise difficult structural design problem.

Design of lightweight mansard portal frames

  • Morales-Rodriguez, P.A.;Lopez-Perales, J.A.;Moreno, M.C. Serna
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.277-285
    • /
    • 2017
  • Single-storey industrial buildings are one of the most often type of structures built among various skeletal framed steel constructions. These metallic buildings offer an exceptional opportunity to minimise the material employed, contributing to a more sustainable construction. In particular, the mansard portal frame is a typology made up of broken beams that involves different lengths and discontinuous slopes. This study aims the weight reduction of the standard mansard portal frame with design purposes by means of varying four parameters: the kink position, the eaves-apex slope, the span and the columns height. In this work, we suggest some guidelines that can improve the economical competitive capabilities of their structural design. In all the cases analysed, the joints of the portal frame are placed over the theoretical non-funicular shape to uniform loads. This allows reducing the bending moment and the shear force, but increasing the axial force. In addition, the performance of mansard and typical pitched portal frames submitted to the same boundary conditions is compared in terms of efficiency in the use of steel. In the large majority of the cases, mansard typologies are lighter than the common pitched frames and, hence, more economical.

A Comparative Study on the Correlation the Wooden Structure Between Traditional Korean Architecture and Traditional Korean Ships - Focusing on the Ships of the Goryeo-sun - (전통 건축과 선박의 목구조 상관 관계 비교 연구 - 고려선을 중심으로 -)

  • Kim, Ra-Nee;Han, Dong-Soo
    • Journal of architectural history
    • /
    • v.31 no.6
    • /
    • pp.7-16
    • /
    • 2022
  • Traditional Korean architecture and traditional ships maintained a close relationship with carpenters and tools because wood, the material, was common. This close relationship may have been from the time of ancient architecture and ancient ships. In previous studies, researchers proved the relationship between these two sides through historical records of traditional architecture and traditional ships. This study attempts to prove the structural association using existing remains. As a result, three structural similarities between traditional architecture and traditional ships could be found. First, the types of wood used are similar, and the tools and terms used are similar. Second, the method of distinguishing horizontal and vertical materials and the structure of wood and the method of forming wood are similar. Lastly, the ship carpenters mobilized for the construction of the palace mainly worked on long and curved materials such as the eaves and the ridge of a roof, because this was the work done when the ship was built. Therefore, it can be assumed that the roof structure they created resembles that of the ship.