• Title/Summary/Keyword: earthquakes

Search Result 3,015, Processing Time 0.025 seconds

Probabilistic seismic assessment of mega buckling-restrained braced frames under near-fault ground motions

  • Veismoradi, Sajad;Darvishan, Ehsan
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.487-498
    • /
    • 2018
  • Buckling-restrained braces are passive control devices with high level of energy dissipation ability. However, they suffer from low post-yield stiffness which makes them vulnerable to severe ground motions, especially near-field earthquakes. Among the several methods proposed to improve resistance of BRB frames, mega-brace configuration can be a solution to increase frame lateral strength and stiffness and improve distribution of forces to prevent large displacement in braces. Due to the limited number of research regarding the performance of such systems, the current paper aims to assess seismic performance of BRB frames with mega-bracing arrangement under near-field earthquakes via a detailed probabilistic framework. For this purpose, a group of multi-story mega-BRB frames were modelled by OpenSEES software platform. In the first part of the paper, simplified procedures including nonlinear pushover and Incremental Dynamic Analysis were conducted for performance evaluation. Two groups of near-fault seismic ground motions (Non-pulse and Pulse-like records) were considered for analyses to take into account the effects of record-to-record uncertainties, as well as forward directivity on the results. In the second part, seismic reliability analyses are conducted in the context of performance based earthquake engineering. Two widely-known EDP-based and IM-based probabilistic frameworks are employed to estimate collapse potential of the structures. Results show that all the structures can successfully tolerate near-field earthquakes with a high level of confidence level. Therefore, mega-bracing configuration can be an effective alternative to conventional BRB bracing to withstand near-field earthquakes.

Fragility Assessment of Damaged Piloti-Type RC Building With/Without BRB Under Successive Earthquakes (연속 지진에 의하여 손상된 필로티 RC 건축물의 BRB 보강 전/후의 취약성 평가)

  • Shin, Jiuk;Kim, JunHee;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.133-141
    • /
    • 2013
  • This paper presents the seismic evaluation and prediction of a damaged piloti-type Reinforced Concrete (RC) building before and after post-retrofitting under successive earthquakes. For considering realistic successive earthquakes, the past records measured at the same station were combined. In this study, the damaged RC building due to the first earthquake was retrofitted with a buckling-restrained brace (BRB) before the second earthquake occurred. Nonlinear Time History Analysis (NTHA) was performed under the scaled intensity of the successive ground motions. Based on the extensive structural response data obtained form from the NTHA, the fragility relationships between the ground shaking intensity and the probability of reaching a pre-determined limit state was were derived. In addition, The the fragility curves of the pre-damaged building without and with the BRBs were employed to evaluate the effect of the successive earthquakes and the post-retrofit effect. Through the seismic assessment subjected to the successive records, it was observed that the seismic performance of the pre-damaged building was significantly affected by the severity of the damage from the first earthquake damages and the hysteresis behavior of the retrofit element.

Numerical investigation on behaviour of cylindrical steel tanks during mining tremors and moderate earthquakes

  • Burkacki, Daniel;Wojcik, Michal;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.97-111
    • /
    • 2020
  • Cylindrical steel tanks are important components of industrial facilities. Their safety becomes a crucial issue since any failure may cause catastrophic consequences. The aim of the paper is to show the results of comprehensive FEM numerical investigation focused on the response of cylindrical steel tanks under mining tremors and moderate earthquakes. The effects of different levels of liquid filling, the influence of non-uniform seismic excitation as well as the aspects of diagnosis of structural damage have been investigated. The results of the modal analysis indicate that the level of liquid filling is really essential in the structural analysis leading to considerable changes in the shapes of vibration modes with a substantial reduction in the natural frequencies when the level of liquid increases. The results of seismic and paraseismic analysis indicate that the filling the tank with liquid leads to the substantial increase in the structural response underground motions. It has also been observed that the peak structural response values under mining tremors and moderate earthquakes can be comparable to each other. Moreover, the consideration of spatial effects related to seismic wave propagation leads to a considerable decrease in the structural response under non-uniform seismic excitation. Finally, the analysis of damage diagnosis in steel tanks shows that different types of damage may induce changes in the free vibration modes and values of natural frequencies.

Earthquakes occurred around the Yeongweol area (영월 및 인접 지역에서 발생한 지진에 대한 고찰)

  • 추교승
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.94-97
    • /
    • 1997
  • The December 13, 1996 Yeongweol earthquake of magnitude 4.5 was felt almost everywhere in southern part of the Korean Peninsula and Cheju Island, even though not feld in Tsushima Island at other places in Japan near to Korea. Production lines of semiconductor disk in electronic engineering companies of Gumi manufacturing complex were seriously affected by the shake of this earthquake. Total 17 earthquakes of magnitude 4 or above occurred within the area of 50km radius from Yeongweol in the period from the year 1400 to 1996. This group of earthquakes includes 12 events of magnitude 5.0 or above and 3 events of magnitude 6.0 or above. Among these events, 13 earthquakes are historical events of years 1400-1904. Most of them occurred in 15-16 centuries. The February 21, 1596 Jungseon-Pyeongchang event of magnitude 6.5 is the largest one up to now in the area. There are four instrumental earthquakes (years 1905-1996) of magnitude 4.0 or above in this area. An earthquake of magnitude 4.4 occurred on 5th of November, 1919 at almost the same place as the December 13, 1996 earthquake of magnitude 4.5. Thus this event is preceded with the previous one by 77 years.

  • PDF

Study on Seismic Resistant Safety of Seismic Isolation Design for Bridge using L.R.B. (L.R.B.를 이용한 면진설계의 내지진 안전성 연구)

  • Lee, Chol-Hee;Shin, Jae-In
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.121-126
    • /
    • 2002
  • Due to few earthquakes in our country, one generally has thought to be safe from earthquakes. However, severe earthquakes occurred in Dangsan and Hyogohyeon which one had regarded as the zone that had not been risky for earthquakes, so that so many people died and a lot of buildings and bridges were destroyed. This event surprised our country and we undertook preparation for earthquakes on the full scale. The concept of seismic design was induced in the country which was poor in it for the scarcity of recognition and insufficiency of funds. Recently, many specialists are enforcing the provisions of seismic design. Therefore, this study introduces the method which combines PC-LEADeR( design program for L.R.B.) with LUSAS(linear elastic analysis) and performs the seismic isolation design more elaborately and simply. It verifies the propriety of that method, and it also examine the factors that affect the response of the bridges. Seismic isolation design for bridge using L.R.B. provides both economical efficiency and superior seismic performance. Second, the results between by the method proposed and by time history analysis have 20% error at the maximum. That is, the method proposed very appropriate.

Generation of Korean artificial earthquakes for Fragility curve (손상도 곡선 작성을 위한 한국형 인공지진의 생성)

  • Nam, Youngyoon;Lee, Jongheon
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.3
    • /
    • pp.406-412
    • /
    • 2015
  • Recently, frequent earthquakes can cause serious damage to the bridge. So newly constructed bridge is considered earthquake resistant design, and for the existing old bridge evaluation of damage state is needed. In this paper, replacement of US-artificial earthquakes which are used for the construction of fragility curve for evaluating damage state to Korean artificial earthquakes to meet the Korean specifications is studied. For the generation of artificial earthquakes, the fragility curves are constructed for the PGA, for the cases of having isolated bearing and not having that.

The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.425-434
    • /
    • 2019
  • The most effective passive vibration control and seismic resistance options in a reinforced concrete (RC) high-rise building (HRB) are the base isolation and the tuned mass damper (TMD) system. Many options, which may be suitable or not for different soil types, with different types of bearing systems, like rubber isolator, friction pendulum isolator and tension/compression isolator, are investigated to resist the base straining actions under five different earthquakes. TMD resists the seismic response, as a control system, by reducing top displacement or the total movement of the structure. Base isolation and TMDs work under seismic load in a different way, so the combination between base isolation and TMDs will reduce the harmful effect of the earthquakes in an effective and systematic way. In this paper, a comprehensive study of the combination of TMDs with three different base-isolator types for three different soil types and under five different earthquakes is conducted. The seismic response results under five different earthquakes of the studied nine RC HRB models (depicted by the top displacement, base shear force and base bending moment) are compared to show the most suitable hybrid passive vibration control system for three different soil types.

Lessons learned from recent destructive Van, Turkey earthquakes

  • Yon, Burak;Sayin, Erkut;Calayir, Yusuf;Ulucan, Zulfu Cinar;Karatas, Mehmet;Sahin, Humeyra;Alyamac, Kursat Esat;Bildik, Abdullah Tevfik
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.431-453
    • /
    • 2015
  • A destructive earthquake, the magnitude of this earthquake was 7.2, hit Van, Turkey on October 23, 2011. After this devastating earthquake, a moderate earthquake which had 5.7 magnitude on November 9, 2011 occurred in Edremit, Van. These earthquakes caused heavy damages and collapses in many reinforced concrete buildings with loss of lives. In this paper, characteristics of ground motions of these earthquakes were studied and, deficiencies in structural elements and engineering faults such as poor workmanship and quality of construction, soft and weak stories, strong beam-weak column, short column, large overhang, hammering and unconfined gable wall were investigated. According to the observations, it was seen that, low quality of structural materials, lack of engineering services, inappropriate design and construction with insufficient detailing of the structural elements were the main reasons of heavy damages.

Seismic assessment and retrofitting measures of a historic stone masonry bridge

  • Rovithis, Emmanouil N.;Pitilakis, Kyriazis D.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.645-667
    • /
    • 2016
  • The 750 m long "De Bosset" bridge in the Cephalonia Island of Western Greece, being the area with the highest seismicity in Europe, was constructed in 1830 by successive stone arches and stiff block-type piers. The bridge suffered extensive damages during past earthquakes, such as the strong M7.2 earthquake of 1953, followed by poorly-designed reconstruction schemes with reinforced concrete. In 2005, a multidisciplinary project for the seismic assessment and restoration of the "De Bosset" bridge was undertaken under the auspices of the Greek Ministry of Culture. The proposed retrofitting scheme combining soil improvement, structural strengthening and reconstruction of the deteriorated masonry sections was recently applied on site. Design of the rehabilitation measures and assessment of the pre- and post-interventions seismic response of the bridge were based on detailed in-situ and laboratory tests, providing foundation soil and structural material properties. In-situ inspection of the rehabilitated bridge following the strong M6.1 and M6.0 Cephalonia earthquakes of January 26th and February 3rd 2014, respectively, revealed no damages or visible defects. The efficiency of the bridge retrofitting is also proved by a preliminary performance analysis of the bridge under the recorded ground motion induced by the above earthquakes.

Effectiveness of non-linear fluid viscous dampers in seismically isolated buildings

  • Guler, Elif;Alhan, Cenk
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.191-204
    • /
    • 2019
  • Near-field earthquake records including long-period high-amplitude velocity pulses can cause large isolation system displacements leading to buckling or rupture of isolators. In such cases, providing supplemental damping in the isolation system has been proposed as a solution. However, it is known that linear viscous dampers can reduce base displacements in case of near-field earthquakes but at the potential expense of increased superstructure response in case of far-field earthquakes. But can non-linear dampers with different levels of non-linearity offer a superior seismic performance? In order to answer this question, the effectiveness of non-linear viscous dampers in reducing isolator displacements and its effects on the superstructure response are investigated. A comparison with linear viscous dampers via time history analysis is done using a base-isolated benchmark building model under historical near-field and far-field earthquake records for a wide range of different levels of non-linearity and supplemental damping. The results show that the non-linearity level and the amount of supplemental damping play important roles in reducing base displacements effectively. Although use of non-linear supplemental dampers may cause superstructure response amplification in case of far-field earthquakes, this negative effect may be avoided or even reduced by using appropriate combinations of non-linearity level and supplemental damping.