• Title/Summary/Keyword: earthquake resistant structure

Search Result 127, Processing Time 0.025 seconds

The Effect of Higher Vibration Modes on the Design Seismic Load (고차진동모드의 영향을 고려한 층지진하중)

  • 이동근;신용우
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.123-132
    • /
    • 1990
  • In current practice of earthquake resistant design the equivalent lateral force procedure is widely used because of its simplicity and convenience. But the equivalent lateral force procedure is derived based on the assumptions that the dynamic behavior of the structure is governed primarily by the fundamental vibration mode and the effect of higher modes is included in an approximate manner. Therefore the prediction of dynamic responses of structures using the equivalent lateral force procedure is not reliable when the effect of higher vibration modes on the dynamic behavior is significant. In this study, design seismic load which can reflect the effect of higher vibration modes is proposed from the point of view of proper assessment of story shears which have the major influence on the design moment of beams and columns. To evaluate the effect of higher modes, differences between the story force based on the equivalent lateral force procedure specified in current earthquake resistance building code and the one based on modal analysis using design spectrum analysis are examined. From these results an improved design seismic load for the equivalent lateral force procedure which can reflect the effect of higher vibration modes are proposed.

  • PDF

Seismic response of current RC buildings in Kathmandu Valley

  • Chaulagain, Hemchandra;Rodrigues, Hugo;Spacone, Enrico;Varum, Humberto
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.791-818
    • /
    • 2015
  • RC buildings constitute the prevailing type of construction in earthquake-prone region like Kathmandu Valley. Most of these building constructions were based on conventional methods. In this context, the present paper studied the seismic behaviour of existing RC buildings in Kathmandu Valley. For this, four representative building structures with different design and construction, namely a building: (a) representing the non-engineered construction (RC1 and RC2) and (b) engineered construction (RC3 and RC4) has been selected for analysis. The dynamic properties of the case study building models are analyzed and the corresponding interaction with seismic action is studied by means of non-linear analyses. The structural response measures such as capacity curve, inter-storey drift and the effect of geometric non-linearities are evaluated for the two orthogonal directions. The effect of plan and vertical irregularity on the performance of the structures was studied by comparing the results of two engineered buildings. This was achieved through non-linear dynamic analysis with a synthetic earthquake subjected to X, Y and $45^{\circ}$ loading directions. The nature of the capacity curve represents the strong impact of the P-delta effect, leading to a reduction of the global lateral stiffness and reducing the strength of the structure. The non-engineered structures experience inter-storey drift demands higher than the engineered building models. Moreover, these buildings have very low lateral resistant, lesser the stiffness and limited ductility. Finally, a seismic safety assessment is performed based on the proposed drift limits. Result indicates that most of the existing buildings in Nepal exhibit inadequate seismic performance.

Seismic evaluation of masonry railroad tunnels (조적식 철도터널의 내진성능평가에 관한 연구)

  • Lee, In-Mo;Jeong, Kyeong-Han;Lee, Jun-Suk;Choi, Jin-Yu;Shin, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.319-332
    • /
    • 2002
  • Domestic masonry railroad tunnel lining consists of red bricks or granite stone blocks and mortar. It is necessary to evaluate the behaviour of the masonry tunnel lining during an earthquake because the lining was constructed without the consideration of seismic loads. In this study, a methodology to evaluate the seismic resistant capacity of masonry tunnel linings was proposed, i.e. material property evaluation and seismic analysis technique. The red brick masonry tunnel lining is arrayed with multi-layers composed of 3 to 5 bricks depending on ground conditions and each brick is attached with mortar. Equivalent property concept was adopted to consider the stiffness difference among the red brick material itself and joints between bricks. Response spectrum analysis was performed by considering ground-structure interactions. A parametric study was performed to figure out the effect of relative stiffness between the lining and rock mass on the seismic behavior. A resonable countermeasure to minimize the earthquake-induced damage was also proposed.

  • PDF

Inelastic Seismic Response of Asymmetric-Plan Self-Centering Energy Dissipative Braced Frames (비정형 셀프센터링 가새골조의 비탄성 지진응답)

  • Kim, Jin-Koo;Christopoulos, C.;Choi, Hyun-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.35-44
    • /
    • 2008
  • A self-centering energy-dissipative(SCED) bracing system has recently been developed as a new seismic force resistant bracing system. The advantage of the SCED brace system is that, unlike other comparable advanced bracing systems that dissipate energy such as the buckling restrained brace(BRB) system, it has a self-centering capability that reduces or eliminates residual building deformations after major seismic events. In order to investigate the effects of torsion on the SCED brace and BRB systems, nonlinear time history analyses were used to compare the responses of 3D model structures with three different amounts of frame eccentricity. The results of the analysis showed that the interstory drifts of SCED braced frames are more uniform than those of BRB frames, without regard to irregularity. The residual drift and residual rotation responses tended to decrease as irregularity increased. For medium-rise structures, the drift concentration factors(DCFs) for SCED systems were lower than those for BRB frames. This means that SCED-braced frames deform in a more uniform manner with respect to building height. The effect of the torsional irregularity on the magnitude of the DCFs was small.

Seismic response and damage development analyses of an RC structural wall building using macro-element

  • Hemsas, Miloud;Elachachi, Sidi-Mohammed;Breysse, Denys
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.447-470
    • /
    • 2014
  • Numerical simulation of the non-linear behavior of (RC) structural walls subjected to severe earthquake ground motions requires a reliable modeling approach that includes important material characteristics and behavioral response features. The objective of this paper is to optimize a simplified method for the assessment of the seismic response and damage development analyses of an RC structural wall building using macro-element model. The first stage of this study investigates effectiveness and ability of the macro-element model in predicting the flexural nonlinear response of the specimen based on previous experimental test results conducted in UCLA. The sensitivity of the predicted wall responses to changes in model parameters is also assessed. The macro-element model is next used to examine the dynamic behavior of the structural wall building-all the way from elastic behavior to global instability, by applying an approximate Incremental Dynamic Analysis (IDA), based on Uncoupled Modal Response History Analysis (UMRHA), setting up nonlinear single degree of freedom systems. Finally, the identification of the global stiffness decrease as a function of a damage variable is carried out by means of this simplified methodology. Responses are compared at various locations on the structural wall by conducting static and dynamic pushover analyses for accurate estimation of seismic performance of the structure using macro-element model. Results obtained with the numerical model for rectangular wall cross sections compare favorably with experimental responses for flexural capacity, stiffness, and deformability. Overall, the model is qualified for safety assessment and design of earthquake resistant structures with structural walls.

A Study of Seismic Resistant Design for Base-Isolated Bridges(I) (지진에 대비한 기초분리 교량의 설계법에 관한 연구(I))

  • Lee, Sang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.625-635
    • /
    • 1997
  • The base isolation technique and its benefits in reducing the transmitted earthquake energy into a structure have gained increasing recognition during the last two decades. Unfortunately, the current available design procedures, especially for base-isolated bridges, seem inadequate and too restrictive. As a result, practical design procedure still relies upon a series of deterministic time history analyses. In this study, the evaluation of the possibility of the normal mode method to predict the nonlinear seismic responses of base isolated bridges has been performed. The applicability has been examined through the numerical approach with isolator's elastic or plastic states of the base isolated bridges. Numerical results show that the 1st. mode period and the various responses are varied with the state but are conversed. And, the result show that the normal mode method is applicable to predict the seismic responses and to design the babe isolated bridge. Various analysis method to bridges with bilinearized hysteresis isolator and various pier heights are evalulated.

  • PDF

Monte Carlo analysis of earthquake resistant R-C 3D shear wall-frame structures

  • Taskin, Beyza;Hasgur, Zeki
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.371-399
    • /
    • 2006
  • The theoretical background and capabilities of the developed program, SAR-CWF, for stochastic analysis of 3D reinforced-concrete shear wall-frame structures subject to seismic excitations is presented. Incremental stiffness and strength properties of system members are modeled by extended Roufaiel-Meyer hysteretic relation for bending while shear deformations for walls by Origin-Oriented hysteretic model. For the critical height of shear-walls, division to sub-elements is performed. Different yield capacities with respect to positive and negative bending, finite extensions of plastic hinges and P-${\delta}$ effects are considered while strength deterioration is controlled by accumulated hysteretic energy. Simulated strong motions are obtained from a Gaussian white-noise filtered through Kanai-Tajimi filter. Dynamic equations of motion for the system are formed according to constitutive and compatibility relations and then inserted into equivalent It$\hat{o}$-Stratonovich stochastic differential equations. A system reduction scheme based on the series expansion of eigen-modes of the undamaged structure is implemented. Time histories of seismic response statistics are obtained by utilizing the computer programs developed for different types of structures.

Experimental research on seismic behavior of novel composite RCS joints

  • Men, Jinjie;Guo, Zhifeng;Shi, Qingxuan
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.209-221
    • /
    • 2015
  • Results from an experimental study on the seismic response of six composite reinforced concrete column-to-steel beam interior joints are presented. The primary variable investigated is the details in the joint. For the basic specimen, the main subassemblies of the beam and column are both continuous, and the steel beam flanges extended to the joint are partly cut off. Transverse beam, steel band plates, cove plates, X shape reinforcement bars and end plates are used in the other five specimens, respectively. After the joint steel panel yielded, two failure modes were observed during the test: local failure in Specimens 1, 2 and 4, shear failure in Specimens 3, 5 and 6. Specimens 6, 3, 5 and 4 have a better strength and deformation capacity than the other two specimens for the effectiveness of their subassemblies. For Specimens 2 and 4, though the performance of strength degradation and stiffness degradation are not as good as the other four specimens, they all have excellent energy dissipation capacity comparing to the RC joint, or the Steel Reinforced Concrete (SRC) joint. Based on the test result, some suggestions are presented for the design of composite RCS joint.

A Study on the Recycling of the Closed Schools in Japan - A Case Study on the Remodeling of Shinagawa in Japan - (폐교를 리모델링한 노인시설에 관한 연구 - 일본의 시나가와구 리모델링 사례를 중심으로 -)

  • Kim, Sung-Ryong
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.22 no.2
    • /
    • pp.18-25
    • /
    • 2020
  • Recently (2019), more than 3,800 schools have been closed in Korea due to the decrease in the number of students. Among them, 1,000 closed schools were used, 400 unused closed schools were sold, and the remaining 2,400 were sold. However, considering the absolute lack of elderly facilities due to the aging population, it seems necessary to recycle these public assets into elderly facilities. The purpose of this study is to explore the cases of remodeling closed schools in Japan and recycling them as elderly facilities, and to find ways to resolve the very serious shortage of elderly facilities while seeking measures to closed schools in Korea. The results of this study are summarized as follows: 1) In the case of Shinagawa in Tokyo, it was easy to change its use because the building was owned by the old district. 2) The existing classroom space was used as it was to create an elderly living space consisting of two or three rooms and one bathroom unit. 3) In case 2, even if the earthquake-resistant structure was reinforced, the overall construction cost was reduced by 30% compared to the new construction.

Evaluating the performance of OBS-C-O in steel frames under monotonic load

  • Bazzaz, Mohammad;Andalib, Zahra;Kafi, Mohammad Ali;Kheyroddin, Ali
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.699-712
    • /
    • 2015
  • Bracing structures with off-centre bracing system is one of the new resistant systems that frequently used in the frame with pin connections. High ductility, high-energy dissipation and decrease of base shear are advantages of this bracing system. However, beside these advantages, reconstruction and hard repair of off-centre bracing system cause inappropriate performance in the earthquake. Therefore, in this paper, the goal is investigating the behavior of this type of bracing system with ductile element (circular dissipater), in order to providing replacement of damaged member without needing repair or reconstruction of the general system. To achieve this purpose, some numerical studies have been performed using ANSYS software, a frame with off-centre bracing system and optimum eccentricity (OBS-C-O) and another frame with the same identifications without ductile element (OBS) has been created. In order to investigate precisely on the optimum placement of circular elements under monotonic load again three steal frames were modeled. Furthermore, the behavior of this general system investigated for the first time, linear and nonlinear behavior of these two steel frames compared to each other, to achieve the benefit of using the circular element in an off-centre bracing system. Eventually, the analytical results revealed that the performance of steel ring at the end of off-centre braces system illustrating as a first defensive line and buckling fuse in the off-centre bracing system.