• 제목/요약/키워드: earthquake resistant capacity

검색결과 77건 처리시간 0.025초

Experimental research on seismic behavior of novel composite RCS joints

  • Men, Jinjie;Guo, Zhifeng;Shi, Qingxuan
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.209-221
    • /
    • 2015
  • Results from an experimental study on the seismic response of six composite reinforced concrete column-to-steel beam interior joints are presented. The primary variable investigated is the details in the joint. For the basic specimen, the main subassemblies of the beam and column are both continuous, and the steel beam flanges extended to the joint are partly cut off. Transverse beam, steel band plates, cove plates, X shape reinforcement bars and end plates are used in the other five specimens, respectively. After the joint steel panel yielded, two failure modes were observed during the test: local failure in Specimens 1, 2 and 4, shear failure in Specimens 3, 5 and 6. Specimens 6, 3, 5 and 4 have a better strength and deformation capacity than the other two specimens for the effectiveness of their subassemblies. For Specimens 2 and 4, though the performance of strength degradation and stiffness degradation are not as good as the other four specimens, they all have excellent energy dissipation capacity comparing to the RC joint, or the Steel Reinforced Concrete (SRC) joint. Based on the test result, some suggestions are presented for the design of composite RCS joint.

비대칭 벽식 구조지 변위기초 내진성능평가 및 보강 (Displacement-based Seismic Assessment and Rehabilitation of Asymmetric Wall Structures)

  • 홍성걸;하태휴
    • 한국지진공학회논문집
    • /
    • 제9권3호
    • /
    • pp.23-32
    • /
    • 2005
  • 편심이 있는 구조물이 지진하중을 받는 경우 비틀림의 발생으로 특정부재에 응력 및 변위가 집중되고 이는 전혀 예상치 못한 구조물의 파괴를 유발할 수 있다. 본 연구에서는 각 횡저항 부재의 한계 변위를 기반으로 하여 구조물 전체의 횡변위와 비틀림각의 관계도(D-R Relationship: Displacement-Rotation Relationship)를 작성하고 변위스펙트럼을 이용하여 내진성능평가를 수행하는 방법을 제안한다. 제안된 내진성능평가의 방법은 시간이력해석의 결과를 이용해서 검증하였다. 또한 다양한 지진수준에 대해 구조물의 다른 성능수준을 기준으로 하는 다단계 내진성능평가를 수행하였다. 최종적으로 그 결과를 기준으로 D-R 관계도를 이용한 내진보강 전략을 제시하였다. 내진보강은 각 부재의 강도/강성을 증가시키는 방법과 연성도를 증가시키는 두 가지의 방법을 사용하였다. 특히 강도/강성을 증가시키는 내진보강 전략에서는 보강의 최적화를 위하여 보강전략을 최적화 문제로 구성하고 BFGS Quasi-Newton method를 이용하여 최적보강전략을 수립하는 과정을 제시하였다.

고성능 배근상세 및 HDFRM을 활용한 고강도 철근콘크리트 보-기둥 접합부 내진성능 평가 및 개선 (Improvement and Evaluation of Seismic Performance of Reinforced High-Strength Concrete Beam-Column Joints with Advanced Reinforcing Detailings and High Ductile Fiber-Reinforced Mortar)

  • 하기주;신종학;이동렬;홍건호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.5-8
    • /
    • 2008
  • 본 연구에서는 고강도철근콘크리트 보-기둥 접합부의 고성능화 기술 즉 콘크리트의 고강도화, 접합부 영역의 손상을 최소화하고 보의 소성힌지를 보의 내측으로 완전히 이동함과 동시에 내진성능을 향상시키는 고성능 설계상세 기술 및 고인성섬유 복합모르타르을 도입한 시험체를 제작하고 실험을 수행하여 이력거동을 평가하였다. ${\blacksquare}$ 철근콘크리트 보-기둥 접합부의 내진성능을 향상시키고, 보-기둥 접합면에 인접하여 발생하는 소성힌지를 보의 내측으로 이동시킬 목적으로 새로운 접합부 설계상세를 도입한 정착형 중간철근(1.5d)과 이중폐쇄스터럽 보강 시험체(HJCI)는 소성힌지의 이동은 물론 내진성능이 현저히 개선 되었다. ${\blacksquare}$ 철근콘크리트 보-기둥 접합부의 철근배근 및 콘크리트 밀실타설의 문제점을 해소하고 기둥의 띠철근 및 보의 스터럽을 고인성섬유 복합모르타르(HDFRM)로 대체한 실험체 (HJRP)의 경우 안정적인 이력거동, 충분한 내력확보 및 만족스런 파괴형태를 나타내었다.

  • PDF

Review of seismic studies of liquid storage tanks

  • Zhao, Ming;Zhou, Junwen
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.557-572
    • /
    • 2018
  • The academic research works about liquid storage tanks are reviewed for the purpose of providing valuable reference to the engineering practice on their aseismic design. A summary of the performance of tanks during past earthquakes is described in this paper. Next, the seismic response of tanks under unidirectional earthquake is reported, supplemented with the dynamic response under multidirectional motions. Then, researches on the influence of soil-structure interaction are brought out to help modify the seismic design approach of tanks in different areas with variable properties of soils. Afterwards, base isolation systems are reported to demonstrate their effectiveness for the earthquake-resistant design of liquid storage tanks. Further, researches about the liquid-structure interaction are reviewed with description of simplified models and numerical analytical methods, some of which consider the elastic effect of tank walls. Moreover, the liquid sloshing phenomenon on the hydrodynamic behaviors of tanks is presented by various algorithms including grid-based and meshfree method. And then the impact of baffles in changing the dynamic characteristics of the liquid-structure system is raised, which shows the energy dissipation by the vortex motion of liquid. In addition, uplifting effect is given to enhance the understanding on the capacity of unanchored tanks and some assessment of their development. At last, the concluding remarks and the aspects of extended research in the field of liquid storage tanks under seismic loads are provided, emphasizing the thermal stress analysis, the replaceable system for base isolation, the liquid-solid interaction and dynamic responses with stochastic excitations.

Seismic behavior of steel column-base-connection equipped by NiTi shape memory alloy

  • Jamalpour, Reza;Nekooei, Masoud;Moghadam, Abdolreza Sarvghad
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.109-120
    • /
    • 2017
  • The behavior of moment resistant steel structures depends on both the beam-column connections and columns foundations connections. Obviously, if the connections can meet the adequate ductility and resistance against lateral loads, the seismic capacity of these structures will be linked practically to the performance of these connections. The shape memory alloys (SMAs) have been most recently used as a means of energy dissipation in buildings. The main approach adopted by researchers in the use of such alloys is firstly bracing, and secondly connecting the beams to columns. Additionally, the behavior of these alloys is modeled in software applications rarely involving equivalent torsional springs and column-foundation connections. This paper attempts to introduce the shape memory alloys and their applications in steel structural connections, proposing a new steel column-foundation connection, not merely a theoretical model but practically a realistic and applicable model in structures. Moreover, it entails the same functionality as macro modeling software based on real behavior, which can use different materials to establish a connection between the columns and foundations. In this paper, the suggested steel column-foundation connection was introduced. Moreover, exploring the seismic dynamic behavior under cyclic loading protocols and the famous earthquake records with different materials such as steel and interconnection equipment by superelastic shape memory alloys have been investigated. Then, the results were compared to demonstrate that such connections are ideal against the seismic behavior and energy dissipation.

Application of neural networks and an adapted wavelet packet for generating artificial ground motion

  • Asadi, A.;Fadavi, M.;Bagheri, A.;Ghodrati Amiri, G.
    • Structural Engineering and Mechanics
    • /
    • 제37권6호
    • /
    • pp.575-592
    • /
    • 2011
  • For seismic resistant design of critical structures, a dynamic analysis, either response spectrum or time history is frequently required. Owing to the lack of recorded data and the randomness of earthquake ground motion that may be experienced by structure in the future, usually it is difficult to obtain recorded data which fit the requirements (site type, epicenteral distance, etc.) well. Therefore, the artificial seismic records are widely used in seismic designs, verification of seismic capacity and seismic assessment of structures. The purpose of this paper is to develop a numerical method using Artificial Neural Network (ANN) and wavelet packet transform in best basis method which is presented for the decomposition of artificial earthquake records consistent with any arbitrarily specified target response spectra requirements. The ground motion has been modeled as a non-stationary process using wavelet packet. This study shows that the procedure using ANN-based models and wavelet packets in best-basis method are applicable to generate artificial earthquakes compatible with any response spectra. Several numerical examples are given to verify the developed model.

Seismic Behavior of High-Strength Concrete Square Short Columns Confined in Thin Steel Shell

  • Han, Byung-Chan;Yun, Hyun-Do;Chung, Soo-Young
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.23-34
    • /
    • 2000
  • Experiments were carried out to investigate the seismic behaviors, such as lateral strength, ductility and energy-dissipation capacity. of high-strength concrete (HSC) square short column confined in thin steel shell. The primary objective of the study was to investigate the suitability of using HSC square columns confined in thin steel shell in region of moderate-to-high seismic risk. A total of six columns, consisting of two ordinarily reinforced concrete square short columns and four reinforced concrete square short columns confined in thin steel shell was tested. Column specimens, short columns in a moment resisting frame with girder. were tested under a constant axial and reversed cyclic lateral loads. To design the specimens. transverse reinforcing methods, level of axial load applied, and the steel tube width-thickness ratio (D/t) were chosen as main parameters. Test results were also discussed and compared in the light of improvements in general behaviors, ductility, and energy-absorption capacities. Compared to conventionally reinforced concrete columns, the HSC columns confined in thin steel shell had similar load-displacement hysteretic behavior but exhibited greater energy-dissipation characteristics . It is concluded that, in strong earthquake areas, the transverse reinforcing method by using a thin steel shell (D/t=125) is quite effective to make HSC short columns with very strong and ductile.

  • PDF

Analyzing behavior of circular concrete-filled steel tube column using improved fuzzy models

  • Zheng, Yuxin;Jin, Hongwei;Jiang, Congying;Moradi, Zohre;Khadimallah, Mohamed Amine;Safa, Maryam
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.625-637
    • /
    • 2022
  • Axial compression capacity (Pu) is a significant yet complex parameter of concrete-filled steel tube (CFST) columns. This study offers a novel ensemble tool, adaptive neuro-fuzzy inference system (ANFIS) supervised by equilibrium optimization (EO), for accurately predicting this parameter. Moreover, grey wolf optimization (GWO) and Harris hawk optimizer (HHO) are considered as comparative supervisors. The used data is taken from earlier literature provided by finite element analysis. ANFIS is trained by several population sizes of the EO, GWO, and HHO to detect the best configurations. At a glance, the results showed the competency of such ensembles for learning and reproducing the Pu behavior. In details, respective mean absolute errors along with correlation values of 4.1809% and 0.99564, 10.5947% and 0.98006, and 4.8947% and 0.99462 obtained for the EO-ANFIS, GWO-ANFIS, and HHO-ANFIS, respectively, indicated that the proposed EO-ANFIS can analyze and predict the behavior of CFST columns with the highest accuracy. Considering both time and accuracy, the EO provides the most efficient optimization of ANFIS and can be a nice substitute for experimental approaches.

전단벽 제진시스템의 반복가력실험 (Cyclic Test of Shear Wall Damping Systems)

  • 안태상;김영주;김형근;장동운;최경규;김종락
    • 한국강구조학회 논문집
    • /
    • 제25권1호
    • /
    • pp.81-92
    • /
    • 2013
  • 기존 내진설계의 목적은 구조물의 갑작스런 피해로 인한 인명손실을 방지하는 것이다. 지난 수십년간 구조물의 내진성능을 향상시키기 위해서 효과적인 지진저항시스템을 개발하는 수많은 연구들이 진행되었다. 본 연구의 목적은 내진성능을 향상시킴과 동시에 지진 이후 보수가 편리하도록 하는 새로운 제진시스템을 제안하는데 있다. 제안된 제진시스템은 벽의 하부에 슬릿을 두고 제진장치가 수평으로 작동하도록 하여 지진에너지를 소산하도록 계획되었다. 제안된 시스템의 이력거동과 에너지소산능력을 조사하기 위해서 반복가력실험을 실시하였다. 실험결과는 제안된 시스템이 안정된 이력응답을 나타내며, 에너지의 소산은 제진장치에 집중되는 것을 보여준다.

Seismic response of current RC buildings in Kathmandu Valley

  • Chaulagain, Hemchandra;Rodrigues, Hugo;Spacone, Enrico;Varum, Humberto
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.791-818
    • /
    • 2015
  • RC buildings constitute the prevailing type of construction in earthquake-prone region like Kathmandu Valley. Most of these building constructions were based on conventional methods. In this context, the present paper studied the seismic behaviour of existing RC buildings in Kathmandu Valley. For this, four representative building structures with different design and construction, namely a building: (a) representing the non-engineered construction (RC1 and RC2) and (b) engineered construction (RC3 and RC4) has been selected for analysis. The dynamic properties of the case study building models are analyzed and the corresponding interaction with seismic action is studied by means of non-linear analyses. The structural response measures such as capacity curve, inter-storey drift and the effect of geometric non-linearities are evaluated for the two orthogonal directions. The effect of plan and vertical irregularity on the performance of the structures was studied by comparing the results of two engineered buildings. This was achieved through non-linear dynamic analysis with a synthetic earthquake subjected to X, Y and $45^{\circ}$ loading directions. The nature of the capacity curve represents the strong impact of the P-delta effect, leading to a reduction of the global lateral stiffness and reducing the strength of the structure. The non-engineered structures experience inter-storey drift demands higher than the engineered building models. Moreover, these buildings have very low lateral resistant, lesser the stiffness and limited ductility. Finally, a seismic safety assessment is performed based on the proposed drift limits. Result indicates that most of the existing buildings in Nepal exhibit inadequate seismic performance.