DOI QR코드

DOI QR Code

Analyzing behavior of circular concrete-filled steel tube column using improved fuzzy models

  • Zheng, Yuxin (School of Civil Engineering and Architecture, Zhejiang Guangsha Vocational and Technical University of Construction) ;
  • Jin, Hongwei (School of Civil Engineering and Architecture, Zhejiang Guangsha Vocational and Technical University of Construction) ;
  • Jiang, Congying (School of Civil Engineering and Architecture, Zhejiang Guangsha Vocational and Technical University of Construction) ;
  • Moradi, Zohre (Faculty of Engineering and Technology, Department of Electrical Engineering, Imam Khomeini International University) ;
  • Khadimallah, Mohamed Amine (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Safa, Maryam (Faculty of Civil Engineering, Duy Tan University)
  • Received : 2021.06.30
  • Accepted : 2022.04.22
  • Published : 2022.06.10

Abstract

Axial compression capacity (Pu) is a significant yet complex parameter of concrete-filled steel tube (CFST) columns. This study offers a novel ensemble tool, adaptive neuro-fuzzy inference system (ANFIS) supervised by equilibrium optimization (EO), for accurately predicting this parameter. Moreover, grey wolf optimization (GWO) and Harris hawk optimizer (HHO) are considered as comparative supervisors. The used data is taken from earlier literature provided by finite element analysis. ANFIS is trained by several population sizes of the EO, GWO, and HHO to detect the best configurations. At a glance, the results showed the competency of such ensembles for learning and reproducing the Pu behavior. In details, respective mean absolute errors along with correlation values of 4.1809% and 0.99564, 10.5947% and 0.98006, and 4.8947% and 0.99462 obtained for the EO-ANFIS, GWO-ANFIS, and HHO-ANFIS, respectively, indicated that the proposed EO-ANFIS can analyze and predict the behavior of CFST columns with the highest accuracy. Considering both time and accuracy, the EO provides the most efficient optimization of ANFIS and can be a nice substitute for experimental approaches.

Keywords

References

  1. Agnihotri, S., Atre, A. and Verma, H. (2020), "Equilibrium Optimizer for Solving Economic Dispatch Problem", 2020 IEEE 9th Power India International Conference (PIICON) 1-5. https://doi.org/10.1109/PIICON49524.2020.9113048
  2. Avci-Karatas, C. (2019) "Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS)", Steel Compos. Struct., 33(4), 583-594. https://doi.org/10.12989/scs.2019.33.4.583.
  3. Balasubramanian, S., Jegan, J. and Sundarraja, M. (2020), "ANFIS-based accurate estimation of the Confinement Effect for Concrete-Filled Steel Tubular (CFST)", Int. J. Fuzzy Syst., 22(6), 1760-1771. https://doi.org/10.1007/s40815-020-00902-0.
  4. Basarir, H., Elchalakani, M. and Karrech, A. (2019), "The prediction of ultimate pure bending moment of concrete-filled steel tubes by adaptive neuro-fuzzy inference system (ANFIS)", Neural Comput. Appl., 31(2), 1239-1252. https://doi.org/10.1007/s00521-017-3108-3.
  5. Bekdas, G. and Nigdeli, S. (2016), "Optimum design of reinforced concrete columns employing teaching learning based optimization", Challenge J. Struct. Mech., 2(4), 216-219. http://dx.doi.org/10.20528/cjsmec.2016.11.030.
  6. Chen, H., Jiao, S., Wang, M., Heidari, A.A. and Zhao, X. (2020), "Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts", J. Cleaner Product., 244, 118778. https://doi.org/10.1016/j.jclepro.2019.118778.
  7. Chen ,W., Hong, H., Panahi, M., Shahabi, H., Wang, Y., Shirzadi, A., Pirasteh, S., Alesheikh, A.A., Khosravi, K. and Panahi, S. (2019), "Spatial prediction of landslide susceptibility using gisbased data mining techniques of anfis with whale optimization algorithm (woa) and grey wolf optimizer (gwo)", Appl. Sci., 9(18), 3755. https://doi.org/10.3390/app9183755.
  8. Chen, Y., Lin, H., Cao, R. and Zhang, C. (2021), "Slope stability analysis considering different contributions of shear strength parameters", Int. J. Geomech., 21(3), 04020265. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001937.
  9. Choi, K.K. and Xiao, Y. (2010), "Analytical model of circular CFRP confined concrete-filled steel tubular columns under axial compression", J. Compos. Construct., 14(1), 125-133. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000056.
  10. Duong, H.T., Phan, H.C., Le, T.T. and Bui, N.D. (2020), "Optimization design of rectangular concrete-filled steel tube short columns with Balancing Composite Motion Optimization and data-driven model", Structures, 757-765. https://doi.org/10.1016/j.istruc.2020.09.013.
  11. Elchalakani, M., Patel, V., Karrech, A., Hassanein, M.F., Fawzia, S. and Yang, B. (2019), "Finite element simulation of circular short CFDST columns under axial compression", Structures, 607-619. https://doi.org/10.1016/j.istruc.2019.06.004.
  12. Faramarzi, A., Heidarinejad, M., Stephens, B. and Mirjalili, S. (2020), "Equilibrium optimizer: A novel optimization algorithm", Knowledge-Based Syst., 191, 105190. https://doi.org/10.1016/j.knosys.2019.105190
  13. Feng, D.C., Liu, Z.T., Wang, X.D., Jiang, Z.M. and Liang, S.X. (2020), "Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm", Adv. Eng. Inform., 45, 101126. https://doi.org/10.1016/j.aei.2020.101126.
  14. Geng, X., Moayedi, H., Pan, F. and Foong, L.K. (2021), "Predicting the concrete compressive strength through MLP network hybridized with three evolutionary algorithms", Smart Struct. Syst., 28(5), 711-725. https://doi.org/10.12989/sss.2021.28.5.711.
  15. Ghasemi, M., Zhang, C., Khorshidi, H. and Sun, L. (2022), "Seismic performance assessment of steel frames with slack cable bracing systems", Eng. Struct., 250, 113437. https://doi.org/10.1016/j.engstruct.2021.113437.
  16. Gupta, S., Deep, K. and Mirjalili, S. (2020), "An efficient equilibrium optimizer with mutation strategy for numerical optimization", Appl. Soft Comput., 96, 106542. https://doi.org/10.1016/j.asoc.2020.106542.
  17. Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Construct. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
  18. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M. and Chen, H. (2019), "Harris Hawks optimization: Algorithm and applications", Future Generation Comput. Syst., 97, 849-872. https://doi.org/10.1016/j.future.2019.02.028.
  19. Huang, H., Huang, M., Zhang, W. and Yang, S. (2021), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastruct. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768.
  20. Huang, W., Fan, Z., Shen, P., Lu, L. and Zhou, Z. (2020), "Experimental and numerical study on the compressive behavior of micro-expansive ultra-high-performance concretefilled steel tube columns", Construct. Build. Mater., 254, 119150. https://doi.org/10.1016/j.conbuildmat.2020.119150.
  21. Jang, J.S. (1993), "ANFIS: Adaptive-network-based fuzzy inference system", IEEE Transactions Syst., Man, Cybernetics, 23(3), 665-685. https://doi.org/10.1109/21.256541
  22. Javed, M.F., Farooq, F., Memon, S.A., Akbar, A. and Khan, M.A., Aslam, F., Alyousef, R., Alabduljabbar, H. and Rehman, S.K.U. (2020), "New prediction model for the ultimate axial capacity of concrete-filled steel tubes: an evolutionary approach", Crystals 10(9), 741. https://doi.org/10.3390/cryst10090741.
  23. Jebli, I., Belouadha, F.Z., Kabbaj, M.I. and Tilioua, A. (2021), "Prediction of solar energy guided by pearson correlation using machine learning", Energy, 224, 120109. https://doi.org/10.1016/j.energy.2021.120109
  24. Jia, H., Lang, C., Oliva, D., Song, W. and Peng, X. (2019), "Dynamic harris hawks optimization with mutation mechanism for satellite image segmentation", Remote Sensing, 11(12), 1421. https://doi.org/10.3390/rs11121421.
  25. Lu, N., Wang, H., Wang, K. and Liu, Y. (2021), "Maximum probabilistic and dynamic traffic load effects on short-tomedium span bridges", Comput. Modeling Eng. Sci., 127(1), 345-360. https://doi.org/10.32604/cmes.2021.013792.
  26. Luat, N.V., Shin, J. and Lee, K. (2020), "Hybrid BART-based models optimized by nature-inspired metaheuristics to predict ultimate axial capacity of CCFST columns", Eng. Comput., 1-30. https://doi.org/10.1007/s00366-020-01115-7.
  27. Luo ,Y,. Zheng, H., Zhang, H. and Liu, Y. (2021), "Fatigue reliability evaluation of aging prestressed concrete bridge accounting for stochastic traffic loading and resistance degradation", Adv. Struct. Eng., 24(13), 3021-3029. https://doi.org/10.1177/13694332211017995.
  28. Ly, H.B., Pham, B.T., Le, L.M., Le, T.T., Le, V.M. and Asteris, P.G. (2020), "Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models", Neural Comput. Appl., 1-22. https://doi.org/10.1007/s00521-020-05214-w.
  29. Ma, X., Foong, L.K., Morasaei, A., Ghabussi, A. and Lyu, Z. (2020), "Swarm-based hybridizations of neural network for predicting the concrete strength", Smart Struct. Syst., 26(2), 241-251. https://doi.org/10.12989/sss.2020.26.2.241.
  30. Mai, S.H., Seghier, M.E.A.B., Nguyen, P.L., Jafari-Asl, J., Thai, D.K. (2020), "A hybrid model for predicting the axial compression capacity of square concrete-filled steel tubular columns", Eng. Comput., 1-18.
  31. Mansouri, I., Gholampour, A., Kisi, O. and Ozbakkaloglu, T. (2018), "Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques", Neural Comput. Appl., 29(3), 873-888. https://doi.org/10.1007/s00521-016-2492-4.
  32. Mehrabi, M. (2021), "Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy", Natural Hazards, 1-37. https://doi.org/10.1007/s11069-021-05083-z.
  33. Mehrabi, M. and Moayedi, H. (2021), "Landslide susceptibility mapping using artificial neural network tuned by metaheuristic algorithms", Environment. Earth Sci., 80(24), 1-20. https://doi.org/10.1007/s12665-021-10098-7.
  34. Mehrabi, M., Pradhan, B., Moayedi, H. and Alamri, A. (2020), "Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-ofthe- art metaheuristic techniques", Sensors, 20, https://doi.org/10.3390/s20061723.
  35. Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), "Grey wolf optimizer", Adv. Eng. Softw., 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
  36. Moayedi, H., Mehrabi, M., Bui, D.T., Pradhan, B., Foong, L.K. (2020), "Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility", J. Environment. Manage., 260, 109867. https://doi.org/10.1016/j.jenvman.2019.109867
  37. Moayedi, H., Mehrabi, M., Kalantar, B., Abdullahi Mu'azu, M.A., Rashid, A.S., Foong, L.K. and Nguyen, H. (2019a), "Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial susceptibility assessment of seismic-induced landslide", Geomatics, Nat. Hazards Risk 10(1), 1879-1911. https://doi.org/10.1080/19475705.2019.1650126.
  38. Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2019b), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0.
  39. Moayedi, H., Nguyen, H. and Foong, L.K. (2019c), "Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network", Eng. Comput., 1-11. https://doi.org/10.1007/s00366-019-00882-2.
  40. Moayedi, H., Nguyen, H. and Rashid, A.S.A. (2019d), "Comparison of dragonfly algorithm and Harris hawks optimization evolutionary data mining techniques for the assessment of bearing capacity of footings over two-layer foundation soils", Eng. Comput., 1-11. https://doi.org/10.1007/s00366-019-00834-w.
  41. Moayedi, H., Osouli, A., Nguyen, H. and Rashid, A.S.A. (2019e), "A novel Harris hawks' optimization and k-fold crossvalidation predicting slope stability", Eng. Comput., 1-11. https://doi.org/10.1007/s00366-019-00828-8.
  42. Mohammadhassani, M., Saleh, A., Suhatril, M. and Safa, M. (2015), "Fuzzy modelling approach for shear strength prediction of RC deep beams", Smart Struct. Syst., 16(3), 497-519. https://doi.org/10.12989/sss.2015.16.3.497.
  43. Mou, B. and Bai, Y. (2018), "Experimental investigation on shear behavior of steel beam-to-CFST column connections with irregular panel zone", Eng. Struct., 168, 487-504. https://doi.org/10.1016/j.engstruct.2018.04.029.
  44. Naderpour, H. and Mirrashid, M. (2019), "Shear failure capacity prediction of concrete beam-column joints in terms of ANFIS and GMDH", Practice Periodical Struct. Des. Construct., 24(2), 04019006. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000417.
  45. Naderpour, H. and Mirrashid, M. (2020a), "Estimating the compressive strength of eco-friendly concrete incorporating recycled coarse aggregate using neuro-fuzzy approach", J. Cleaner Product., 121886. https://doi.org/10.1016/j.jclepro.2020.121886.
  46. Naderpour, H. and Mirrashid, M. (2020b), "Moment capacity estimation of spirally reinforced concrete columns using ANFIS", Complex Intelligent Syst., 6(1), 97-107. https://doi.org/10.1007/s40747-019-00118-2.
  47. Naderpour, H. and Mirrashid, M. (2020c), "Proposed soft computing models for moment capacity prediction of reinforced concrete columns", Soft Comput., 1-15. https://doi.org/10.1007/s00500-019-04634-8.
  48. Nehdi, M. and Greenough, T. (2007), "Modeling shear capacity of RC slender beams without stirrups using genetic algorithms", Smart Struct. Syst., 3(1), 51-68. https://doi.org/10.12989/sss.2007.3.1.051
  49. Nguyen, H.Q., Ly, H.B., Tran, V.Q., Nguyen, T.A., Le, T.T. and Pham, B.T. (2020a), "Optimization of artificial intelligence system by evolutionary algorithm for prediction of axial capacity of rectangular concrete filled steel tubes under compression", Materials, 13(5), 1205. https://doi.org/10.3390/ma13051205.
  50. Nguyen, Q.H., Ly, H.B., Tran, V.Q., Nguyen, T.A., Phan, V.H., Le, T.T. and Pham, B.T. (2020b), "A novel hybrid model based on a feedforward neural network and one step secant algorithm for prediction of load-bearing capacity of rectangular concretefilled steel tube columns", Molecules, 25(15), 3486. https://doi.org/10.3390/molecules25153486.
  51. Ren, Q., Li, M., Zhang, M., Shen, Y. and Si, W. (2019), "Prediction of ultimate axial capacity of square concrete-filled steel tubular short columns using a hybrid intelligent algorithm", Appl. Sci., 9(14), 2802. https://doi.org/10.3390/app9142802.
  52. Sanchez-Olivares, G. and Tomas, A. (2017), "Improvements in meta-heuristic algorithms for minimum cost design of reinforced concrete rectangular sections under compression and biaxial bending", Eng. Struct., 130, 162-179. https://doi.org/10.1016/j.engstruct.2016.10.010.
  53. Sarir, P., Shen, S.L., Wang, Z.F., Chen, J., Horpibulsuk, S. and Pham, B.T. (2019), "Optimum model for bearing capacity of concrete-steel columns with AI technology via incorporating the algorithms of IWO and ABC", Eng. Comput., 1-11.
  54. Shi, T., Lan, Y., Hu, Z., Wang, H., Xu, J. and Zheng, B. (2022), "Tensile and fracture properties of silicon carbide whiskermodified cement-based materials", Int. J. Concrete Struct. Mater., 16(1), 1-13. https://doi.org/10.1186/s40069-021-00495-4.
  55. Tan, K., Qin, Y., Du, T., Li, L., Zhang, L. and Wang, J. (2021), "Biochar from waste biomass as hygroscopic filler for pervious concrete to improve evaporative cooling performance", Construct. Build. Mater., 287, 123078. https://doi.org/10.1016/j.conbuildmat.2021.123078.
  56. Tikhamarine, Y., Souag-Gamane, D., Ahmed, A.N., Kisi, O. and El-Shafie, A. (2020), "Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm", J. Hydrology, 582, 124435. https://doi.org/10.1016/j.jhydrol.2019.124435.
  57. Tran, V.L. and Kim, S.E. (2020), "Efficiency of three advanced data-driven models for predicting axial compression capacity of CFDST columns", Thin-Wall. Struct., 152, 106744. https://doi.org/10.1016/j.tws.2020.106744.
  58. Tran, V.L., Thai, D.K. and Nguyen, D.D. (2020), "Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete", Thin-Wall. Struct., 151, 106720. https://doi.org/10.1016/j.tws.2020.106720.
  59. Wang. Y.B. and Liew, J.R. (2016), "Constitutive model for confined ultra-high strength concrete in steel tube", Construct. Build. Mater., 126, 812-822. https://doi.org/10.1016/j.conbuildmat.2016.09.079.
  60. Xiao, X., Bu, G., Ou, Z. and Li, Z, (2022), "Nonlinear in-plane instability of the confined FGP arches with nanocomposites reinforcement under radially-directed uniform pressure", Eng. Struct., 252, 113670. https://doi.org/10.1016/j.engstruct.2021.113670.
  61. Xie, S.J., Lin, H., Chen, Y.F. and Wang, Y.X. (2021), "A new nonlinear empirical strength criterion for rocks under conventional triaxial compression", J. Central South Univ., 28(5), 1448-1458. https://doi.org/10.1007/s11771-021-4708-8.
  62. Xu, C., Amar, M.N., Ghriga, M.A., Ouaer, H., Zhang, X. and Hasanipanah, M. (2020), "Evolving support vector regression using Grey Wolf optimization; forecasting the geomechanical properties of rock", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-020-01131-7.
  63. Ye, X., Moayedi, H., Khari, M. and Foong, L.K. (2020), "Metaheuristic-hybridized multilayer perceptron in slope stability analysis", Smart Struct. Syst., 26(3), 263-275.
  64. Zeng, J.J., Lv, J.F., Lin, G., Guo, Y.C. and Li, L.J. (2018), "Compressive behavior of double-tube concrete columns with an outer square FRP tube and an inner circular high-strength steel tube", Construct. Build. Mater., 184, 668-680. https://doi.org/10.1016/j.conbuildmat.2018.07.034.
  65. Zhang, H., Liu, Y. and Deng, Y. (2021a), "Temperature gradient modeling of a steel box-girder suspension bridge using Copulas probabilistic method and field monitoring", Adv. Struct. Eng., 24(5), 947-961. https://doi.org/10.1177/1369433220971779.
  66. Zhang, W. and Tang, Z. (2021), "Numerical modeling of response of CFRP-Concrete interfaces subjected to fatigue loading", J. Compos. Construct., 25(5), 04021043. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001154.
  67. Zhang, W., Tang, Z., Yang, Y., Wei, J. and Stanislav, P. (2021b), "Mixed-mode debonding behavior between CFRP plates and concrete under fatigue loading", J. Struct. Eng., 147(5), 04021055. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003032.
  68. Zhao, Y., Hu, H., Song, C. and Wang, Z. (2022), "Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural network: Abbreviated title: Various ANNs for modeling concrete strength", Measurement, 110993. https://doi.org/10.1016/j.measurement.2022.110993.
  69. Zhou, G., Moayedi, H. and Foong, L.K. (2021), "Teaching-learning-based metaheuristic scheme for modifying neural computing in appraising energy performance of building", Eng. Comput., 37(4), 3037-3048. https://doi.org/10.1007/s00366-020-00981-5.