• Title/Summary/Keyword: earthquake forces

Search Result 405, Processing Time 0.023 seconds

Effects of Soil Nonlinearity Characteristics on the Seismic Response of KNGRStructures (지반의 비선형 특성이 차세대원전 구조물의 지진응답에 미치는 영향)

  • 장영선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.137-146
    • /
    • 1999
  • The SSI(Soil-Structure Interaction) analyses are being performed for the KNGR(Korean Next Generation Reactor) design because the KNGR is developed as a standard nuclear power plant concept enveloping various soil conditions. the SASSI program which adopts the flexible volume method is used for the SSI analyses. The soil curves used in the three dimensional SSI analyses of KNGR Nuclear Island(NI) structures are based on the upper bound shear modulus curve and lower bound damping degradation on SSI response the average shear modulus curve with average damping curve was used for two soil cases. This study presents the results of the variances by using different soil nonlinearity parameters based on the paametric SSI analyses. The results include the maximum member forces(shear and axial force) at the base of the NI structures and the 5% damping Floor Response Spectra (FRS) at some representative locations at the top of the NI superstructures. They are also compared together with the enveloped SSI results for eight soil cases and fixed-base analysis for rock case by using two control motions.

  • PDF

Passive Vibration Control of Steel-Concrete Composite High-Speed Railway Bridge Under Moving Train Loads (이동열차하중에 대한 강합성형 고속철도교의 수동형 진동제어)

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.251-258
    • /
    • 1999
  • The vibration control of bridge is studied considering the vibration characteristics of the Korean-type high-speed railway bridge. Fast nonlinear analysis is adopted as time integration method and the bridge and the train are modeled by FEM and sequentially moving constant forces respectively. Additional damping mechanism is indispensable to the Korean-type high-speed railway bridge because resonance vibration is excited under the maximum design speed. The optimal position and capacity of the damper is studied through the parametric studies, Transient vibration of the bridge is effectively controlled by such additional dampers which means that dampers play a role as structural damping. And also the maximum response of the bridge is reduced. Therefore it is verified that the increase of expected service life and the improvement of serviceability can be obtained through dampers.

  • PDF

Precast Shear Wall Systems with C Type Connections (C형 접합부를 이용한 프리캐스트 전단벽 시스템에 관한 연구)

  • Hong, Sung-Gul;Lim, Woo-Young
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.217-224
    • /
    • 2006
  • This thesis investigates the behavior of precast wall systems with a new vertical connection which are proportioned by the displacement based design. The proposed precast wall systems are supposed to provide additional spaces and seismic strengthening in remodeling existing residential buildings. For a fast remodeling constructions using PC wails require an efficient, economic fabrication method. A C-type vertical connections for PC wall systems is proposed for transfer of bending moment between walls in the vertical direction while a shear key in the center of wall is prepared to transfer shear forces by bearing. The proposed vertical connection allows us easy fabrication because of different direction of slots at the edges of wall. The dimension of C-type connection components are determined by engineering models and a series of test.

  • PDF

Development of analytical modeling for an energy-dissipating cladding panel

  • Maneetes, H.;Memari, A.M.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.587-608
    • /
    • 2009
  • Modern earthquake-resistant design aims to isolate architectural precast concrete panels from the structural system so as to reduce the interaction with the supporting structure and hence minimize damage. The present study seeks to maximize the cladding-structure interaction by developing an energy-dissipating cladding system (EDCS) that is capable of functioning both as a structural brace, as well as a source of energy dissipation. The EDCS is designed to provide added stiffness and damping to buildings with steel moment resisting frames with the goal of favorably modifying the building response to earthquake-induced forces without demanding any inelastic action and ductility from the basic lateral force resisting system. Because many modern building facades typically have continuous and large openings on top of the precast cladding panels at each floor level for window system, the present study focuses on spandrel type precast concrete cladding panel. The preliminary design of the EDCS was based on existing guidelines and research data on architectural precast concrete cladding and supplemental energy dissipation devices. For the component-level study, the preliminary design was validated and further refined based on the results of nonlinear finite element analyses. The stiffness and strength characteristics of the EDCS were established from a series of nonlinear finite element analyses and are discussed in detail in this paper.

Shake-table responses of a low-rise RC building model having irregularities at first story

  • Lee, Han Seon;Jung, Dong Wook;Lee, Kyung Bo;Kim, Hee Cheul;Lee, Kihak
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.517-539
    • /
    • 2011
  • This paper presents the seismic responses of a 1:5-scale five-story reinforced concrete building model, which represents a residential apartment building that has a high irregularity of weak story, soft story, and torsion simultaneously at the ground story. The model was subjected to a series of uni- and bi-directional earthquake simulation tests. Analysis of the test results leads to the following conclusions: (1) The model survived the table excitations simulating the design earthquake with the PGA of 0.187 g without any significant damages, though it was not designed against earthquakes; (2) The fundamental mode was the torsion mode. The second and third orthogonal translational modes acted independently while the torsion mode showed a strong correlation with the predominant translational mode; (3) After a significant excursion into inelastic behavior, this correlation disappeared and the maximum torsion and torsion deformation remained almost constant regardless of the intensity of the two orthogonal excitations; And, (4) the lateral resistance and stiffness of the critical columns and wall increased or decreased significantly with the large variation of acting axial forces caused by the high bi-directional overturning moments and rocking phenomena under the bi-directional excitations.

Time Domain Soil-Structure Interaction Analysis for Earthquake Loadings Based on Analytical Frequency-Dependent Infinite Elements (해석적 주파수종속 무한요소를 사용한 시간영역해석의 지반-구조물의 상호작용을 고려한 지진해석)

  • Kim, Doo-Kie;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.121-128
    • /
    • 1999
  • This paper presents a time domain method for soil-structure interaction analysis for seismic loadings. It is based on the finite element formulation incorporating analytical frequency-dependent infinite elements for the far field soil. The dynamic stiffness matrices of the far field region formulated using the present method in frequency domain can be easily transformed into the corresponding matrices in time domain. At first, the equivalent earthquake forces are evaluated along the interface between the near and the far fields from the free-field response analysis carried out in frequency domain, and the results are transformed into the time domain. An efficient procedure is developed for the convolution integrals to evaluate the interaction force along the interface, which depends on the response on the interface at the past time instances as well as the concurrent instance. Then, the dynamic responses are obtained for the equivalent earthquake force and the interaction force using Newmark direct integration technique. Since the response analysis is carried out in time domain, it can be easily extended to the nonlinear analysis. Example analysis has been carried out to verify the present method in a multi-layered half-space.

  • PDF

Semi-active friction dampers for seismic control of structures

  • Kori, Jagadish G.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.493-515
    • /
    • 2008
  • Semi-active control systems have attracted a great deal of attention in recent years because these systems can operate on battery power alone, proving advantageous during seismic events when the main power source of the structure may likely fail. The behavior of semi-active devices is often highly non-linear and requires suitable and efficient control algorithm. This paper presents the comparative study and performance of variable semi-active friction dampers by using recently proposed predictive control law with direct output feedback. In this control law, the variable slip force of semi-active variable friction damper is kept slightly lower than the critical friction force, which allows the damper to remain in the slip state during an earthquake, resulting in improved energy dissipation capability. This control algorithm is able to produce a continuous and smooth slip forces for a variable friction damper. The numerical examples include a structure controlled with multiple variable semi-active friction dampers and with multiple passive friction dampers. A parameter, gain multiplier defined as the ratio of damper force to critical damper control force, is investigated under four different real earthquake ground motions, which plays an important role in the present control algorithm of the damper. The numerically evaluated optimum parametric value is considered for the analysis of the structure with dampers. The numerical results of the variable friction dampers show better performance over the passive dampers in reducing the seismic response of structures.

Prestress force effect on fundamental frequency and deflection shape of PCI beams

  • Bonopera, Marco;Chang, Kuo-Chun;Chen, Chun-Chung;Sung, Yu-Chi;Tullini, Nerio
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.255-265
    • /
    • 2018
  • The prestress force effect on the fundamental frequency and deflection shape of Prestressed Concrete I (PCI) beams was studied in this paper. Currently, due to the conflicts among existing theories, the analytical solution for properly considering the structural behavior of these prestressed members is not clear. A series of experiments were conducted on a large-scale PCI beam of high strength concrete with an eccentric straight unbonded tendon. Specifically, the simply supported PCI beam was subjected to free vibration and three-point bending tests with different prestress forces. Subsequently, the experimental data were compared with analytical results based on the Euler-Bernoulli beam theory. It was proved that the fundamental frequency of PCI beams is unaffected by the increasing applied prestress force, if the variation of the initial elastic modulus of concrete with time is considered. Vice versa, the relationship between the deflection shape and prestress force is well described by the magnification factor formula of the compression-softening theory assuming the secant elastic modulus.

Response of Soil Plug to Seaquake Induced by the Vertical Seismic Excitation (수직 지진 진동에 의해 유발된 해진에 대한 관내토의 거동)

  • 최용규
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.81-88
    • /
    • 1998
  • During an earthquake, there are three main components of excitation : horizontal excitation of the ground, vertical excitation of the pile due to superstructure feedback produced by vertical excitation of the ground, and the seawater excitation induced by the vertical ground shaking, that is, "the seaquake." These excitations could have effects on the soil plugs in open-ended pipe piles installed at offshore sites. In this study, seaquake excitation induced by the vertical ground shaking was simulated by pulsing the water pressure at the seabed. During a seaquake, due to induced excess porewater pressure and pressure gradients in the soil, the capacity of open-ended pipe piles installed in a simulated sea depth of greater than 220 m was reduced serevely and the soil plugging resistance was degraded by more than 80%. The soil plug was failed because of the upward seepage forces that developed in the soil plug due to excess pore water pressure produced in the bottom of the soil plug during the seaquake. The compressive capacity of an open-ended pile in a simulated sea depth of less than 220m was reduced only by about 10%, and the soil plug resistance was degraded by less than 5%.s than 5%.

  • PDF

Earthquake Response of Two Adjacent Buildings Founded at Different Depths (기초가 서로 다른 빌딩과 지반의 상호작용에 의한 지진응답 해석)

  • Lee Jong-Seh;Yoon Soon-Jong;Kim Dong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.433-442
    • /
    • 2004
  • The aim of this paper is to study the interaction between adjacent buildings with different foundation levels under earthquake loading conditions. Buildings and soil are represented by two different models. In the first case, the building itself is modeled with standard frame element, whereas the soil behavior is stimulated by a special grid model. In the second case, the building and soil are represented by plane stress or plane strain elements. The modulus of elasticity of the 9round as well as the varying relations of inertia have a strong influence on the section forces within the buildings. The Interaction between the two buildings is demonstrated and discussed via numerical examples using the proposed method.