• Title/Summary/Keyword: earthquake actions

Search Result 60, Processing Time 0.021 seconds

Global seismic performance of a new precast CFST column to RC beam braced frame: Shake table test and numerical study

  • Xu, S.Y.;Li, Z.L.;Liu, H.J.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.805-827
    • /
    • 2016
  • A new type of precast CFST column to RC beam braced frame is proposed in this paper. A series of shake table tests were conducted to excite a one-third scale six-story model for investigating the global seismic performance of this type of structure against earthquake actions. Particular emphasis was given to its dynamic property, global seismic responses and failure path. Correspondingly, a numerical model built on the basis of fiber-beam-element model, multi-layer shell model and element-deactivation method was developed to simulate the seismic performance of the prototype structure. Numerical results were compared with the measured values from shake table tests to verify the validity and reliability of the numerical model. The results demonstrated that the proposed novel precast CFST column to RC beam braced frame performs excellently under strong earthquake excitations; the "strong CFST column-weak RC beam" and "strong connection-weak member" anti-seismic design principles can be easily achieved; the maximum deflections of precast CFSTC-RCB braced frame satisfied the deflection limitations proposed in national code; the numerical model can properly simulate the dynamic property and responses of the precast CFSTC-RCB braced frame that are highly concerned in engineering practice.

FRP versus traditional strengthening on a typical mid-rise Turkish RC building

  • Smyrou, Eleni
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1069-1089
    • /
    • 2015
  • This paper investigates the limits and efficacies of the Fiber Reinforced Polymer (FRP) material for strengthening mid-rise RC buildings against seismic actions. Turkey, the region of the highest seismic risk in Europe, is chosen as the case-study country, the building stock of which consists in its vast majority of mid-rise RC residential and/or commercial buildings. Strengthening with traditional methods is usually applied in most projects, as ordinary construction materials and no specialized workmanship are required. However, in cases of tight time constraints, architectural limitations, durability issues or higher demand for ductile performance, FRP material is often opted for since the most recent Turkish Earthquake Code allows engineers to employ this advanced-technology product to overcome issues of inadequate ductility or shear capacity of existing RC buildings. The paper compares strengthening of a characteristically typical mid-rise Turkish RC building by two methods, i.e., traditional column jacketing and FRP strengthening, evaluating their effectiveness with respect to the requirements of the Turkish Earthquake Code. The effect of FRP confinement is explicitly taken into account in the numerical model, unlike the common procedure followed according to which the demand on un-strengthened members is established and then mere section analyses are employed to meet the additional demands.

Application of Energy-Dissipating Sacrificial Device(EDSD) for Enhancing Seismic Performance of Bridges (교량의 내진성능 향상을 위한 희생부재형 에너지소산장치(EDSD)의 적용에 관한 연구)

  • Kim, Sang-Hyo;Cho, Kwang-Yil;Kim, Hae-Young
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.445-452
    • /
    • 2006
  • A new Energy-Dissipating Sacrificial Device(EDSD) is proposed, which can effectively dissipate the energy stored in the structures during seismic actions. A mathematical 3-D bridge models and analysis techniques are developed to represent the non-linear behavior of the EDSD, various seismic responses of a sample bridge with the EDSD are analyzed in terms of energy, member forces and deformation using the developed analysis method. And the EDSD is tested and certified it's behavior and stability to apply on exiting bridges. The EDSD can be able to dissipate a large amount of energy and therefore it can prevent the pier's excessive forces under seismic excitations and EDSD and its connected members are also stable. Additionally, the method and guidelines of an optimum EDSD design are proposed in terms of installation method and decision of number of EDSD. The Proposed EDSD under seismic excitations can significantly decrease the excessive storing energy in the bridge structures and reduce the relative displacements of each superstructure to the ground. The EDSD is also found to function as a structural fuse under strong ground motions, sacrificing itself to absorb the excessive energy. Consequently, economical enhancement of the seismic performance of bridges can be achieved by employing the newly developed energy dissipation sacrificial device(EDSD).

  • PDF

Seismic vulnerability assessment of RC buildings according to the 2007 and 2018 Turkish seismic codes

  • Yon, Burak
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.709-718
    • /
    • 2020
  • Fragility curves are useful tools to estimate the damage probability of buildings owing to seismic actions. The purpose of this study is to investigate seismic vulnerability of reinforced concrete (RC) buildings, according to the 2007 and 2018 Turkish Seismic Codes, using fragility curves. For the numerical analyses, typical five- and seven-storey RC buildings were selected and incremental dynamic analyses (IDA) were performed. To complete the IDAs, eleven earthquake acceleration records multiplied by various scaling factors from 0.2g to 0.8g were used. To predict nonlinearity, a distributed hinge model that involves material and geometric nonlinearity of the structural members was used. Damages to confined concrete and reinforcement bar of structural members were obtained by considering the unit deformation demands of the 2007 Turkish Seismic Code (TSC-2007) and the 2018 Turkey Building Earthquake Code (TBEC-2018). Vulnerability evaluation of these buildings was performed using fragility curves based on the results of incremental dynamic analyses. Fragility curves were generated in terms of damage levels occurring in confined concrete and reinforcement bar of structural members with a lognormal distribution assumption. The fragility curves show that the probability of damage occurring is more according to TBEC-2018 than according to TSC-2007 for selected buildings.

The influence of concrete degradation on seismic performance of gravity dams

  • Ahmad Yamin Rasa;Ahmet Budak;Oguz Akin Duzgun
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.59-75
    • /
    • 2024
  • This paper presents a dam-reservoir interaction model that includes, water compressibility, sloshing of surface water, and radiation damping at the far-end reservoir, to investigate the influence of concrete deterioration on seismic behavior along with seismic performance of gravity dams. Investigations on seismic performance of the dam body have been conducted using the linear time-history responses obtained under six real and 0.3 g normalized earthquake records with time durations from 10 sec to 80 sec. The deterioration of concrete is assumed to develop due to mechanical and chemical actions over the dam lifespan. Several computer programs have been developed in FORTRAN 90 and MATLAB programming languages to analyze the coupled problem considering two-dimensional (2D) plane-strain condition. According to the results obtained from this study, the dam structure shows critical responses at the later ages (75 years) that could cause disastrous consequences; the critical effects of some earthquake loads such as Chi-Chi with 36.5% damage and Loma with 56.2% damage at the later ages of the selected dam body cannot be negligible; and therefore, the deterioration of concrete along with its effects on the dam response should be considered in analysis and design.

A parametric investigation on seismic performance of ageing Sarıyar dam

  • Ahmad Yamin Rasa;Ahmet Budak
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.123-133
    • /
    • 2024
  • The assessment of seismic behavior and seismic performance of ageing Sarıyar concrete gravity dam constructed on Sakarya River in Türkiye is the main focus of this paper. For this purpose, the impact of sediment domain, ageing of concrete material under the impact of chemical and mechanical actions, and dam-water-sediment interaction are included in the two-dimensional (2D) finite element (FE) model developed in FORTRAN 90 environment. In the FE model, the dam and age dependent sediment domains are modeled by solid elements, while reservoir domain is modeled by Lagrangian fluid elements. The radiation of reflected waves to the unbounded water domain is modeled by infinite Lagrangian fluid elements, while unbounded sediment domain is modeled by infinite solid elements. The coupled system was assumed to be under the simultaneous impact of Vertical (V) and Horizontal (H) ingredients of 1976 Koyna earthquake and the coupled system was analyzed in Laplace domain by direct method. Due to the deterioration of the concrete, the H and V displacement responses together with the fundamental period of the body, elongate throughout the lifetime and this reduce the seismic safety of the dam. It was deduced that the ageing dam body will not experience major damages under the Koyna earthquake both at the earlier and later ages. Furthermore, at the heel of the dam, the hydrodynamic pressure responses are decreased by rising the sediment domain depth.

A Study of the Application of Earthquake Early Warning System for the Enhancements in Protective Action by Korea National Park (국립공원의 지진 대응 체계 개선을 위한 지진 조기경보 시스템의 적용에 관한 연구)

  • Yang, Eomzi;Ha, Seong Jun;Kim, Won Kyung;Yun, Tae Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.439-448
    • /
    • 2018
  • Conventional Earthquake Early Warning System (EEWS) detects the propagated P-wave from epicenter which should be achieved within 5 seconds to provide seconds to minutes of warning, allowing people to prepare for protective actions. EEWS in Korea is currently capable of providing a warning within 50 seconds after the primary P-wave detection, however, it is well-known that earthquake warning systems operating around Korean National Parks (KNP) have limited capability to fully monitor earthquake events. This study, therefore, presents a strategy to quantify the potential vulnerability to earthquake hazards by superimposing the distribution of Korea Integrated Seismic System (KISS) and the discretized map of KNP. Total 22 national parks are evaluated, and the results suggest that the improvement of the on-site systems should be necessitated for Gyoengju, Gyeryongsan, Songnisan, Gayasan, and Deogyusan national parks, whereas enhancement of regional systems is required for Bukhansan national park.

Improvement of Earthquake-Resistant Performance of R/C Beam-Column Joint Constructed with High-Strength Concrete Subjected to Cyclic Loading (고강도 철근콘크리트 보-기둥 접합부의 내진성능 개선에 관한 실험적 연구)

  • Ha, Gee-Joo;Kim, Jin-Keun;Chung, Lan
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.135-145
    • /
    • 1992
  • With the increasing tendency to construct high rise reinforced concrete building~i, it is required to use high strength materIals, smaller member sections, and larger reinforcing bars, I t is generally recognized that under severe seismic loads beam column jomts may become more critical structural components than other structural elements. In a ductile momentresistmg reinforced concrete frame, the connection of bearncolumn must be capable of resistll1g the large lateral forces caused by seismic actions, The purpose of this experimental study is to evaluate and ll1vestigate the earthquake resistant perform ance of beam-colurrm subassemblies constructed with high-strength concrete cast by the concrete of com¬pressive strength of 700kg / cm2 subjected to reversed cyclic loadings. New approaches for moving the plastic hinging zone away from the column face and preventing the di¬agonal crack in the joint region are adopted to advance the earthquake-resistant performance of beam-column subassemblies using high-strengh concrete under severe earthquake-type loading. Exper¬imental results indicate that the modified new details which are introduced by intermediate reinforcement in the beam over a specific beam length adjacent to the joint are able to attain the stable hysteretic behavior and the enhancement of earthquake-resistant performance. Keywords: high strength concrete: beam-column Joints; seirnic loads(reversed cyclic loading) : earth¬quake-resistant performance; plastic hinge zone: diagonal crack: intermediate reinforce¬ment ; closed strirrup: hysteretic behavior: enhancement .

A Study on the Evacuation Behavior of Students Due to Tsunami Occurrence in Coastal Areas: Focusing on the Great East Japan Earthquake (연안지역 지진해일 발생에 따른 학생들의 피난행동에 관한 연구 -동일본 대지진을 중심으로-)

  • Won-Jo Jung;Akihito Souda;Takashi Yokota;Tadasu Iida;Koji Itami;Myung-Kwon Lee
    • Journal of Navigation and Port Research
    • /
    • v.47 no.1
    • /
    • pp.18-24
    • /
    • 2023
  • After the Great East Japan Earthquake, many reports and books that compiled testimonies of adult victims were published. Thus, refugee situations are well known, but information on the refugee situations of Japanese students is not. This is because what actions the students took and how they sought refuge from an earthquake or tsunami have not been fully recognized. The purpose of this study was to examine and analyze students' refuge behavior in the Great East Japan Earthquake and to predict the refuge behavior of students affected by future disasters. The results of the study showed that students passively acquired information about earthquakes and tsunamis and that their refuge behavior was highly dependent on adults. Immediately after an earthquake, people tended to protect themselves and stay in place until the shaking stopped. However, they tended to move to another place after the shaking occurred frequently. Students living on ria coastlines were likely to move to high places to escape the threat of earthquakes and tsunamis, whereas students living in plain regions were likely to move vertically to tall buildings, such as schools. As for the mode of movement to refugee shelters, the students arrived at the final refugee shelters in one move, and it is assumed that the refugee shelters should be decided in advance and the students should move there.

Seismic and vibration tests for assessing the effectiveness of GFRP for retrofitting masonry structures

  • Michelis, Paul;Papadimitriou, Costas;Karaiskos, Grigoris K.;Papadioti, Dimitra-Christina;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.207-230
    • /
    • 2012
  • Full-scale shake table seismic experiments and low-amplitude vibration tests on a masonry building are carried out to assess its seismic performance as well as study the effectiveness of a new multifunctional textile material for retrofitting masonry structures against earthquakes. The un-reinforced and the retrofitted with glass fiber reinforced polymer (GFRP) strips masonry building was subjected to a series of earthquake excitations of increasing magnitude in order to progressively induce various small, moderate and severe levels of damage to the masonry walls. The performance of the original and retrofitted building states is evaluated. Changes in the dynamic characteristics (lowest four modal frequencies and damping ratios) of the building are used to assess and quantify the damage states of the masonry walls. For this, the dynamic modal characteristics of the structure states after each earthquake event were estimated by performing low-amplitude impulse hammer and sine-sweep forced vibration tests. Comparisons between the modal results calculated using traditional accelerometers and those using Fiber Bragg Grating (FBG) sensors embedded in the reinforcing textile were carried on to investigate the reliability and accuracy of FBG sensors in tracking the dynamic behaviour of the building. The retrofitting actions restored the stiffness characteristics of the reinforced masonry structure to the levels of the original undamaged un-reinforced structure. The results show that despite a similar dynamic behavior identified, corresponding to reduction of the modal frequencies, the un-reinforced masonry building was severely damaged, while the reinforced masonry building was able to withstand, without visual damage, the induced strong seismic excitations. The applied GFRP reinforcement architecture for one storey buildings was experimentally proven reliable for the most severe earthquake accelerations. It was easily placed in a short time and it is a cost effective solution (covering only 20% of the external wall surfaces) when compared to the cost for full wall coverage by GFRPs.