• Title/Summary/Keyword: earthquake/seismic vulnerability

Search Result 143, Processing Time 0.028 seconds

Seismic Fragility Analysis by Boundary Conditions of a Two-pylon Concrete Cable-stayed Bridge (2주탑 콘크리트 사장교의 경계조건별 지진 취약도 분석)

  • Shin, Yeon-Woo;Hong, Ki-Nam;Yeon, Yeong-Mo;Ji, Sang-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.77-85
    • /
    • 2020
  • In this study, the seismic fragility curve according to the boundary conditions is created for a two-pylon concrete cable-stayed bridge, and the effect of the boundary conditions on the seismic fragility of the target bridge is evaluated. An analysis model for the target bridge is constructed using Midas Civil, and a nonlinear time history analysis is performed by applying the fiber element, concrete and rebar material models. The boundary conditions between the pylon and the stiffened girder are classified into four types: rigid, unconstrained, pot bearing, and seismic isolation bearing, and the seismic fragility curves are created for each boundary condition. The plastic hinge section of the pylon, the connection part, and the cable are selected as weak members, and the earthquake vulnerability curve is created for them. As a result of the analysis, it is found that the seismic isolation bearing model shows the lowest damage probability in the pylon and the connection part, and the seismic fragility of the cable is less affected by the boundary conditions than other members.

District-Level Seismic Vulnerability Rating and Risk Level Based-Density Analysis of Buildings through Comparative Analysis of Machine Learning and Statistical Analysis Techniques in Seoul (머신러닝과 통계분석 기법의 비교분석을 통한 건물에 대한 서울시 구별 지진취약도 등급화 및 위험건물 밀도분석)

  • Sang-Bin Kim;Seong H. Kim;Dae-Hyeon Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.7
    • /
    • pp.29-39
    • /
    • 2023
  • In the recent period, there have been numerous earthquakes both domestically and internationally, and buildings in South Korea are particularly vulnerable to seismic design and earthquake damage. Therefore, the objective of this study is to discover an effective method for assessing the seismic vulnerability of buildings and conducting a density analysis of high-risk structures. The aim is to model this approach and validate it using data from pilot area(Seoul). To achieve this, two modeling techniques were employed, of which the predictive accuracy of the statistical analysis technique was 87%. Among the machine learning techniques, Random Forest Model exhibited the highest predictive accuracy, and the accuracy of the model on the Test Set was determined to be 97.1%. As a result of the analysis, the district rating revealed that Gwangjin-gu and Songpa-gu were relatively at higher risk, and the density analysis of at-risk buildings predicted that Seocho-gu, Gwanak-gu, and Gangseo-gu were relatively at higher risk. Finally, the result of the statistical analysis technique was predicted as more dangerous than those of the machine learning technique. However, considering that about 18.9% of the buildings in Seoul are designed to withstand the Seismic intensity of 6.5 (MMI), which is the standard for seismic-resistant design in South Korea, the result of the machine learning technique was predicted to be more accurate. The current research is limited in that it only considers buildings without taking into account factors such as population density, police stations, and fire stations. Considering these limitations in future studies would lead to more comprehensive and valuable research.

A Study of the Application of Earthquake Early Warning System for the Enhancements in Protective Action by Korea National Park (국립공원의 지진 대응 체계 개선을 위한 지진 조기경보 시스템의 적용에 관한 연구)

  • Yang, Eomzi;Ha, Seong Jun;Kim, Won Kyung;Yun, Tae Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.439-448
    • /
    • 2018
  • Conventional Earthquake Early Warning System (EEWS) detects the propagated P-wave from epicenter which should be achieved within 5 seconds to provide seconds to minutes of warning, allowing people to prepare for protective actions. EEWS in Korea is currently capable of providing a warning within 50 seconds after the primary P-wave detection, however, it is well-known that earthquake warning systems operating around Korean National Parks (KNP) have limited capability to fully monitor earthquake events. This study, therefore, presents a strategy to quantify the potential vulnerability to earthquake hazards by superimposing the distribution of Korea Integrated Seismic System (KISS) and the discretized map of KNP. Total 22 national parks are evaluated, and the results suggest that the improvement of the on-site systems should be necessitated for Gyoengju, Gyeryongsan, Songnisan, Gayasan, and Deogyusan national parks, whereas enhancement of regional systems is required for Bukhansan national park.

Optimization of domes against instability

  • Ye, Jihong;Lu, Mingfei
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.427-438
    • /
    • 2018
  • Static stability is a decisive factor in the design of domes. Stability-related external factors, such as load and supports, are incorporated into structural vulnerability theory by the definition of a relative rate of joint well-formedness ($r_r$). Hence, the instability mechanism of domes can be revealed. To improve stability, an optimization model against instability, which takes the maximization of the lowest $r_r$ ($r_{r,min}$) as the objective and the discrete member sections as the variables, is established with constraints on the design requirements and steel consumption. Optimizations are performed on two real-life Kiewitt-6 model domes with a span of 23.4 m and rise of 11.7 m, which are initially constructed for shaking table collapse test. Well-formedness analyses and stability calculation (via arc-length method) of the models throughout the optimization history demonstrate that this proposed method can effectively enhance $r_{r,min}$ and optimize the static stability of shell-like structures. Additionally, seismic performance of the optimum models subjected to the same earthquake as in the shaking table test is checked. The supplemental simulations prove that the optimum models are superior to the original models under earthquake load as well.

Aftershock Fragility Assessment of Damaged RC Bridge Piers Repaired with CFRP Jackets under Successive Seismic Events (CFRP 교각 재킷 보수를 적용한 손상된 철근콘크리트 교량 교각의 여진 취약도 분석)

  • Jeon, Jong-Su;Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.271-280
    • /
    • 2018
  • This paper presents a framework for developing aftershock fragility curves for reinforced concrete bridges initially damaged by mainshocks. The presented aftershock fragility is a damage-dependent fragility function, which is conditioned on an initial damage state resulting from mainshocks. The presented framework can capture the cumulative damage of as-built bridges due to mainshock-aftershock sequences as well as the reduced vulnerability of bridges repaired with CFRP pier jackets. To achieve this goal, the numerical model of column jackets is firstly presented and then validated using existing experimental data available in literature. A four-span concrete box-girder bridge is selected as a case study to examine the application of the presented framework. The aftershock fragility curves are derived using response data from back-to-back nonlinear dynamic analyses under mainshock-aftershock sequences. The aftershock fragility curves for as-built bridge columns are firstly compared with different levels of initial damage state, and then the post-repair effect of FRP pier jacket is examined through the comparison of aftershock fragility curves for as-built and repaired piers.

Stochastic finite element based seismic analysis of framed structures with open-storey

  • Manjuprasad, M.;Gopalakrishnan, S.;Rao, K. Balaji
    • Structural Engineering and Mechanics
    • /
    • v.15 no.4
    • /
    • pp.381-394
    • /
    • 2003
  • While constructing multistorey buildings with reinforced concrete framed structures it is a common practice to provide parking space for vehicles at the ground floor level. This floor will generally consist of open frames without any infilled walls and is called an open-storey. From a post disaster damage survey carried out, it was noticed that during the January 26, 2001 Bhuj (Gujarat, India) earthquake, a large number of reinforced concrete framed buildings with open-storey at ground floor level, suffered extensive damage and in some cases catastrophic collapse. This has brought into sharp focus the need to carry out systematic studies on the seismic vulnerability of such buildings. Determination of vulnerability requires realistic structural response estimations taking into account the stochasticity in the loading and the system parameters. The stochastic finite element method can be effectively used to model the random fields while carrying out such studies. This paper presents the details of stochastic finite element analysis of a five-storey three-bay reinforced concrete framed structure with open-storey subjected to standard seismic excitation. In the present study, only the stochasticity in the system parameters is considered. The stochastic finite element method used for carrying out the analysis is based on perturbation technique. Each random field representing the stochastic geometry/material property is discretised into correlated random variables using spatial averaging technique. The uncertainties in geometry and material properties are modelled using the first two moments of the corresponding parameters. In evaluating the stochastic response, the cross-sectional area and Young' modulus are considered as independent random fields. To study the influence of correlation length of random fields, different correlation lengths are considered for random field discretisation. The spatial expectations and covariances for displacement response at any time instant are obtained as the output. The effect of open-storey is modelled by suitably considering the stiffness of infilled walls in the upper storey using cross bracing. In order to account for changes in soil conditions during strong motion earthquakes, both fixed and hinged supports are considered. The results of the stochastic finite element based seismic analysis of reinforced concrete framed structures reported in this paper demonstrate the importance of considering the effect of open-storey with appropriate support conditions to estimate the realistic response of buildings subjected to earthquakes.

Modified analytical AI evolution of composite structures with algorithmic optimization of performance thresholds

  • ZY Chen;Yahui Meng;Huakun Wu;ZY Gu;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • This study proposes a new hybrid approach that utilizes post-earthquake survey data and numerical analysis results from an evolving finite element routing model to capture vulnerability processes. In order to achieve cost-effective evaluation and optimization, this study introduced an online data evolution data platform. The proposed method consists of four stages: 1) development of diagnostic sensitivity curve; 2) determination of probability distribution parameters of throughput threshold through optimization; 3) update of distribution parameters using smart evolution method; 4) derivation of updated diffusion parameters. Produce a blending curve. The analytical curves were initially obtained based on a finite element model used to represent a similar RC building with an estimated (previous) capacity height in the damaged area. The previous data are updated based on the estimated empirical failure probabilities from the post-earthquake survey data, and the mixed sensitivity curve is constructed using the update (subsequent) that best describes the empirical failure probabilities. The results show that the earthquake rupture estimate is close to the empirical rupture probability and corresponds very accurately to the real engineering online practical analysis. The objectives of this paper are to obtain adequate, safe and affordable housing and basic services, promote inclusive and sustainable urbanization and participation, implement sustainable and disaster-resilient buildings, sustainable human settlement planning and management. Therefore, with the continuous development of artificial intelligence and management strategy, this goal is expected to be achieved in the near future.

Regional Estimation of Site-specific Seismic Responses at Gyeongju by Building GIS-based Geotechnical Information System (GIS 기반의 지반 정보 시스템 구축을 통한 경주 지역 부지고유 지진 응답의 지역적 평가)

  • Sun, Chang-Guk;Chung, Choon-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.2
    • /
    • pp.38-50
    • /
    • 2008
  • The site-specific seismic responses and corresponding seismic hazards are influenced mainly by the subsurface geologic and geotechnical dynamic characteristics. To estimate reliably the seismic responses in this study, a geotechnical information system (GTIS) within GIS framework was developed by introducing new concepts, which consist of the extended area containing the study area and the additional site visit for acquiring surface geo-knowledge data. The GIS-based GTIS was built for Gyeongju area, which has records of abundant historical seismic hazards reflecting the high potential of future earthquakes. At the study area, Gyeongju, intensive site investigations and pre-existing geotechnical data collections were performed and the site visits were additionally carried out for assessing geotechnical characteristics and shear wave velocity ($V_S$) representing dynamic property. Within the GTIS for Gyeongju area, the spatially distributed geotechnical layers and $V_S$ in the entire study area were reliably predicted from the site investigation data using the geostatistical kriging method. Based on the spatial geotechnical layers and $V_S$ predicted within the GTIS, a seismic zoning map on site period ($T_G$) from which the site-specific seismic responses according to the site effects can be estimated was created across the study area of Gyeongju. The spatial $T_G$ map at Gyeongju indicated seismic vulnerability of two- to five-storied buildings. In this study, the seismic zonation based on $T_G$ within the GIS-based GTIS was presented as regional efficient strategy for seismic hazard prediction and mitigation.

  • PDF

Fragility Analysis of RC Moment Resisting Frame with Masonry Infill Walls (비내력벽을 가진 RC모멘트저항골조의 취약도 해석)

  • Ko, Hyun;Park, Yong-Koo;Lee, Dong-Guen
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.355-362
    • /
    • 2009
  • Many of residential buildings, which have pilotis in lower stories to meet the architectural needs, are recently constructed in Korea. Usually, infill walls located in the upper stories of these buildings may cause a soft first story, which is very weak from the earthquake resistance. In the design of the buildings, the infill walls of upper stories are usually considered as non-structural elements and thus they are not included in the analytical model. However, the infill walls may affect the seismic behavior of the residential buildings. Therefore, the differences in seismic behaviors of RC buildings with and without masonry infill walls are required to be investigated. In this study, seismic fragility analyses were performed for masonry infilled low-rise RC moment-resisting frames. And seismic behaviors of RC moment-resisting frame with/without masonry infill walls were evaluated. Two types of structural system with the same frame and different allocation of infill walls are used to evaluate the influence of masonry infill walls on seismic behavior of RC moment-resisting frames. The infill walls were modeled as bi-equivalent diagonal struts. The fragility analyses show that the seismic performance of RC moment-resisting frames with soft story is below the desirable building seismic performance level recommended by current seismic codes, indicating high vulnerability of RC moment-resisting frames with soft story.

Analysis on the Influence of Groundwater Level Changes on Slope Stability using a Seismic Refraction Survey in a Landslide Area (지구물리탐사를 이용한 산사태지역의 지하수위에 따른 안정성 해석)

  • Lee, Kyoung-Mi;Kim, Hyun;Lee, Jae-Hyuk;Seo, Young-Seok;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.545-554
    • /
    • 2007
  • Landslides is mainly induced by a heavy rainfall, earthquake ground motion, and some other factors like soil mechanics, morphological-geological factors etc. Since the starting point of the failure seemed to be originated at a construction site in the study, it is meaningful to find out the relationship between the landslide and the construction. For this study, the slope failure factor was examined carefully to see that the original natural slope had vulnerability and that the complex ground had unstability changed by construction. A field survey was conducted on the original ground surface and filled-up ground. A laboratory test was also conducted to determine the geomechanical properties of soil samples. 2D and 3D limit equilibrium analysis with changing groundwater level were conducted at the failure depth using a seismic refraction survey. The result shows that the factor of safety is similar stability under all condition, but unstable under saturated condition.