• Title/Summary/Keyword: earth and space

Search Result 1,803, Processing Time 0.029 seconds

CRE ECPERIMENT OF KITSAT-1 (우리별 1호에서의 SPACE RADIATION 환경 조사)

  • 신영훈;민경욱;최영완;김성헌
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.131-145
    • /
    • 1994
  • The Cosmic Ray Experiment (CRE) is one of the modules flown on board the KITSAT-1 satellite and consistes of two sub-systems: the Total Dose Experiment (TDE) and the Cosmic Particl Experiment(CPE). The purpose of CRE is to characterize the space radiation environment as encountered by an Earth-orbiting spacecraft. KITSAT-1 orbit is dominated by the inner Van Allen radiation belt. This region has a large population of high energy protons which contributes significantly to both long-term and transient radiation effects. The data shows that the inner Van Allen radiation belt is very stable and the solar activity influences the CPE, TDE data and SEU(Single Event Upset) rates. The result also shows that much larger high energy particle flux is recorded than the predictions of the CREME code.

  • PDF

A Comparison of CME Arrival Time Estimations by the WSA/ENLIL Cone Model and an Empirical Model

  • Jang, Soo-Jeong;Moon, Yong-Jae;Lee, Kyoung-Sun;Na, Hyeon-Ock
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.92.1-92.1
    • /
    • 2012
  • In this work we have examined the performance of the WSA/ENLIL cone model provided by Community Coordinated Modeling Center (CCMC). The WSA/ENLIL model simulates the propagation of coronal mass ejections (CMEs) from the Sun into the heliosphere. We estimate the shock arrival times at the Earth using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters from Michalek et al. (2007) as well as their associated interplanetary (IP) shocks. We make a comparison between CME arrival times by the WSA/ENLIL cone model and IP shock observations. For the WSA/ENLIL cone model, the root mean square(RMS) error is about 13 hours and the mean absolute error(MAE) is approximately 10.4 hours. We compared these estimates with those of the empirical model by Kim et al.(2007). For the empirical model, the RMS and MAE errors are about 10.2 hours and 8.7 hours, respectively. We are investigating several possibilities on relatively large errors of the WSA/ENLIL cone model, which may be caused by cone model velocities, CME density enhancement factor, or CME-CME interaction.

  • PDF

Electrical Property of $BaTiO_3$ Ceramics(II) ($BaTiO_3$ 세라믹의 전기적성질(II))

  • 윤기현;송효일;윤상옥;이형복
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.2
    • /
    • pp.75-78
    • /
    • 1981
  • The electrical conductivity of $(M_2O_3)_x (BaTiO_3)_{1-x}$ has been measured over the temperature range of 30 to 27$0^{\circ}C$. The substitution of rare earth oxide such as $La_2O_3$, $Nd_2O_3$, or $Dy_2O_3$ can be represented by $M_2O_3$. The additional mole fraction of the rare earth oxide is ranged over 0.0015 to 0.0030. The electrical conductivity exhibits an anomalous decrease near the tetragonal to cubic transition about 12$0^{\circ}C$. The decrease in the electrical conductivity is observed at the higher impurity concentrations owing to space charge layer. The increase in the electrical conductivity is observed as the impurity ion is varied from $La^{+3}$$Nd^{+3}$ to $Dy^{+3}$, due to overlap of 4f electrons of the inner shell.

  • PDF

DEEP-South: The Progress and the Plans of the First Year

  • Moon, Hong-Kyu;Kim, Myung-Jin;Roh, Dong-Goo;Park, Jintae;Yim, Hong-Suh;Lee, Hee-Jae;Choi, Young-Jun;Oh, Young-Seok;Bae, Young-Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.48.2-48.2
    • /
    • 2016
  • The wide-field and the round-the clock operation capabilities of the KMTNet enables the discovery, astrometry and follow-up physical characterization of asteroids and comets in a most efficient way. We collectively refer to the team members, partner organizations, the dedicated software subsystem, the computing facility and research activities as Deep Ecliptic Patrol of the Southern Sky (DEEP-South). Most of the telescope time for DEEP-South is devoted to targeted photometry of Near Earth Asteroids (NEAs) to push up the number of the population with known physical properties from several percent to several dozens of percent, in the long run. We primarily adopt Johnson R-band for lightcurve study, while we employ BVI filters for taxonomic classification and detection of any possible color variations of an object at the same time. In this presentation, the progress and new findings since the last KAS meeting will be outlined. We report DEEP-South preliminary lightcurves of several dozens of NEAs obtained at three KMTNet stations during the first year runs. We also present a physical model of asteroid (5247) Krylov, the very first Non principal Axis (NPA) rotator that has been confirmed in the main belt (MB). A new asteroid taxonomic classification scheme will be introduced with an emphasis on its utility in the LSST era. The progress on the current version of automated mover detection software will also be summarized.

  • PDF

Technology Trends in CubeSat-Based Space Laser Communication (큐브위성 기반 우주 레이저 통신 기술 동향)

  • Chanil Yeo;Young Soon Heo;Siwoong Park;Hyoung Jun Park
    • Journal of Space Technology and Applications
    • /
    • v.4 no.2
    • /
    • pp.87-104
    • /
    • 2024
  • CubeSats are being utilized in various fields such as Earth observation, space exploration, and verification of space science and technology due to their low cost, short development period, enhanced mission-oriented performance, and ability to perform various missions through constellation and formation flights. Recently, as the availability of CubeSats has increased and their application areas have expanded, the demand for high-speed transmission of large amounts of data obtained by CubeSats has increased unprecedentedly. Laser-based free space optical communication technology is capable of transmitting large amounts of data at high speeds compared to the existing radio communication methods, and provides various advantages such as use of unlicensed spectrum, low cost, low power, high security characteristics, and of use a small communication platform. For this reason, it is suitable as a high-performance communication technology to support CubeSat missions. In this paper, we will present the core components and characteristics of CubeSat-based space laser communication system, and recent research trends, as well as representative technology development results.

PRELIMINARY FEASIBILITY STUDY OF THE SOLAR OBSERVATION PAYLOADS FOR STSAT-CLASS SATELLITES

  • Moon, Yong-Jae;Cho, Kyung-Seok;Jin, Ho;Chae, Jong-Chul;Lee, Sung-Ho;Seon, Kwang-Il;Kim, Yeon-Han;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.329-342
    • /
    • 2004
  • In this paper, we present preliminary feasibility studies on three types of solar observation payloads for future Korean Science and Technology Satellite (STSAT) programs. The three candidates are (1) an UV imaging telescope, (2) an UV spectrograph, and (3) an X-ray spectrometer. In the case of UV imaging telescope, the most important constraint seems to be the control stability of a satellite in order to obtain a reasonably good spatial resolution. Considering that the current pointing stability estimated from the data of the Far ultraviolet Imaging Spectrograph (FIMS) onboard the Korean STSAT-1, is around 1 arc minutes/sec, we think that it is hard to obtain a spatial resolution sufficient for scientific research by such an UV Imaging Telescope. For solar imaging missions, we realize that an image stabilization system, which is composed of a small guide telescope with limb sensor and a servo controller of secondary mirror, is quite essential for a very good pointing stability of about 0.1 arcsec. An UV spectrograph covering the solar full disk seems to be a good choice in that there is no risk due to poor pointing stability as well as that it can provide us with valuable UV spectral irradiance data valuable for studying their effects on the Earth's atmosphere and satellites. The heritage of the FIMS can be a great advantage of developing the UV spectrograph. Its main disadvantage is that two major missions are in operation or scheduled. Our preliminary investigations show that an X-ray spectrometer for the full disk Sun seems to be the best choice among the three candidates. The reasons are : (1) high temporal and spectral X-ray data are very essential for studying the acceleration process of energetic particles associated with solar flares, (2) we have a good heritage of X-ray detectors including a rocket-borne X-ray detector, (3) in the case of developing countries such as India and Czech, solar X-ray spectrometers were selected as their early stage satellite missions due to their poor pointing stabilities, and (4) there is no planned major mission after currently operating Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) mission. Finally, we present a preliminary design of a solar X-ray spectrometer covering soft X-ray (2 keV) to gamma ray (10 MeV).

Transformation of Filter Systems for SQUEAN (SED camera for QUasars in EArly uNiverse)

  • Park, Woojin;Pak, Soojong;Kim, Sanghyuk;Lee, Hye-In;Hyun, Minhee;Shim, Hyunjin;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2015
  • We have recently installed SQUEAN on the 82 inch telescope at the McDonald Observatory, USA. This instrument consists of an ANDOR CCD camera, a focal reducer, an electronic box, an auto guiding system and a new filter wheel which holds up to 20 filters. Currently the filter wheel is equipped with Johnson-Cousins BVRI filters, SDSS rizY and isiz filters, and 50nm medium band pass filters (M625(625nm), M675(675nm), M725(725nm), M775(775nm), M825(825nm), M875(875nm), M925s(925nm), M975(975nm), and M1025(1025nm)). Our medium band pass filter system is suitable with SED fitting. Filter transformation methods are essential for time-domain observations including transient objects, e.g., supernovae, variable stars, and solar system bodies. In this work, we develop a series of equations to convert the open clusters photometry data within these filter systems.

  • PDF

CLASSIFICATION OF THE INTERPLANETARY SHOCKS BY SHOCK DRIVERS

  • OH SU YEON;YI YU;NAH JA-KYUNG;CHO KYUNG-SEOK
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.3
    • /
    • pp.151-157
    • /
    • 2002
  • From the data of solar wind observation by ACE spacecraft orbiting the Earth-Sun Lagrangian point, we selected 48 forward interplanetary shocks(IPSs) occurred in 2000, maximum solar activity period. Examining the profiles of solar wind parameters, the IPSs are classified by their shock drivers. The significant shock drivers are the interplanetary coronal mass ejection(ICME) and the high speed stream(HSS). The IPSs driven by the ICMEs are classified into shocks driven by magnetic clouds and by ejectas based on the existence of magnetic flux rope structure and magnetic field strength. Some IPSs could be formed as the blast wave by the smaller energy and shorter duration of shock drivers such as type II radio burst. Out of selected 48 forward IPSs, $56.2\%$ of the IPSs are driven by ICME, $16.7\%$ by HSS, and $16.7\%$ of the shocks are classified into blast-wave type shocks. However, the shock drivers of remaining $10\%$ of the IPSs are unidentified. The classification of the IPSs by their driver is a first step toward investigating the critical magnitudes of the IPS drivers commencing the magnetic storms in each class.

Legal Issues in Commercial Use of Space Resources: Legal Problems and Policy Implications of U.S. Commercial Space Launch Competitiveness Act of 2015 (우주 자원의 상업적 이용에 관한 법적 문제 - 미국의 2015년 '우주 자원의 탐사 및 이용에 관한 법률' 의 구조와 쟁점 -)

  • Kim, Young-Ju
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.32 no.1
    • /
    • pp.419-477
    • /
    • 2017
  • In Space contains valuable natural resources. These provide a compelling reason for entrepreneurs, investors, and governments to pursue space exploration and settlement. The Outer Space Treaty of 1967 explicitly forbids any government from claiming a celestial resource such as the Moon or a planet. Article II of the Outer Space Treaty states that "outer space, including the Moon and other celestial bodies, is not subject to national appropriation by claim of sovereignty, by means of use or occupation, or by any other means." The U.S. Commercial Space Launch Competitiveness Act of 2015 (CSLCA), however, makes significant advances in furthering U.S. commercial space industry, which explicitly allows U.S. citizens to engage in the commercial exploration and exploitation of 'space resources' including water and minerals. Thus, some scholars argue that the United States recognizing ownership of space resources is an act of sovereignty, and that the act violates the Outer Space Treaty. This paper suggests that it is necessary to guarantee the right to resources harvested in outer space. More specifically, a private ownership of extracted space resources needs to promote new space business and industry. As resources on Earth become increasingly difficult and expensive to mine, it is clear that our laws and policies must encourage private appropriation of space resources. CSLCA which addresses all aspects of space resource extraction will be one way to encourage space commercial activity.

  • PDF

Long-term Trend Analysis of Extreme Temperatures in East Asia Using Quantile Regression (분위수 회귀분석을 이용한 동아시아 지역 극한기온의 장기 추세 분석)

  • Kim, Sang-Wook;Song, Kanghyun;Yoo, Young-Eun;Son, Seok-Woo;Jeong, Su-Jong
    • Journal of Climate Change Research
    • /
    • v.9 no.2
    • /
    • pp.157-169
    • /
    • 2018
  • This study explores the long?term trends of extreme temperatures of 270 observation stations in East Asia (China, Japan, and Korea) for 1961?2013. The 5th percentile of daily minimum temperatures (TN05%) and 95th percentile of daily maximum temperatures (TX95%), derived from the quantile regression, are particularly examined in term of their linear and nonlinear trends. The warming trends of TN05% are typically stronger than those of TX95% with more significant trends in winter than in summer for most stations. In both seasons, warming trends of TN05% tend to amplify with latitudes. The nonlinear trends, quantified by the $2^{nd}$?order polynomial fitting, exhibit different structures with seasons. While summer TN05% and TX95% were accelerated in time, winter TN05% underwent weakening of warming since the 2000s. These results suggest that extreme temperature trends in East Asia are not homogeneous in time and space.