• Title/Summary/Keyword: earth's surface monitoring

검색결과 71건 처리시간 0.02초

Characteristics of Quality and Flow of Water Resources at Palaces in Seoul Metropolitan (서울 시내 궁궐 수원의 수질과 유동 특성)

  • Naranchimeg., B;Lee, Jae-Min;Woo, Nam-C.;Kim, Youn-Tae;Lee, Kang-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • 제16권2호
    • /
    • pp.61-76
    • /
    • 2011
  • This study was objected to provide suggestions for best management practices to restore the cultural and historical values of the wells in Palaces as well as their water qualities. Water resources in the five Palaces in Seoul Metropolitan, including Gyeongbokgung, Changdeokgung, Changgyeonggung, Jongmyo Shrine, and Deoksugung, were surveyed for their physical flows and chemical compositions from April to July in 2010. Ground waters in most wells were found at depths within 5 m from the ground surface, showing typical water-table aquifer systems. Hydraulic gradients indicate water resources in Gyeongbokgung, Changdeokgung, and Changgyeonggung flowing toward south, and toward east in Deoksugung area. Especially, water-level fluctuation data at S-10 in Deoksugung implied the influence of groundwater discharge facility. In Jongmyo Shrine, water was not detected in wells, indicating the water level was lower than the well depth. Based on the water chemistry and stable isotope analyses, water resources and their qualities appeared to be formed by the water-rock interaction along the groundwater paths. S-10 (Deoksugung) and S-14 (Changgyeonggung) samples were contaminated with nitrate ($NO_3$) in levels of higher than Korean drinking water standard, 10 mg/L as $NO_3$-N, but once in four sampling campaigns. In the situation that water resources in Palaces still maintain natural characteristics, the materials that will be used for the restoration and improvement of the Palace water supplies should be carefully selected not to disturb the natural integrity. In addition, because the wells are located in the center of metropolitan area, a systematic monitoring should be applied to detect and to manage the potential impacts of underground construction and various pollution sources.

Applicability of Geophyscal Well Logging in the Assessment of Seawater Intrusion (임해지역 해수침투 평가를 위한 물리검층의 적용성)

  • Lee Sang-Gyu;Hwang Sae-Ho;Hwang Hak-Su;Park In-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • 제3권3호
    • /
    • pp.101-111
    • /
    • 2000
  • In order to assess the seawater intrusion, induction, temperature and conductivity of fluid, and natural gamma logs were obtained in nine wells at the three study areas having different hydrogeologic characteristics. Besides surface geophysical exploration, supplementary geophysical well logs were carried out to understand the hydrogeological characteristics related to the seawater intrusion in the study areas. The geophysical well logs have been proved to increase the accuracy of interpretation of the surface geophyscial exploration's data for assessment of seawater intrusion, and to get the optimum depth for a long monitoring of groundwater. They, also, revealed that the identification of hydrogeological units for strata's porosity was able to be achieved and were illustrated the applicability of geophysical well logs monitoring. Finally, geophysical well logs are expected to play to get the more quantitative information of seawater infusion, if it is fully collaborated with a better method that is strata's resistivity determination with not relatively much effected by seawater within the drilled borehole and that is the porosity measurement with built on small diameter PVC casing.

  • PDF

Numerical Simulation of Normal Logging Measurements in the Proximity of Earth Surface (지표 부근에서의 노멀전기검층 수치 모델링)

  • Nam, Myung-Jin;Hwang, Se-Ho
    • Economic and Environmental Geology
    • /
    • 제43권3호
    • /
    • pp.259-267
    • /
    • 2010
  • Resistivity logging instruments were designed to measure electrical resistivity of formation, which can be directly interpreted to provide water-saturation profile. Short and long normal logging measurements are made under groundwater level. In some investigation sites, groundwater level reaches to a depth of a few meters. It has come to attention that the proximity of groundwater level might distort short and long normal logging readings, when the measurements are made near groundwater level, owing to the proximity of an insulating air. This study investigates the effects of the proximity of groundwater level (and also the proximity of earth surface) on the normal by simulating normal logging measurements near groundwater level. In the simulation, we consider all the details of real logging situation, i.e., the presence of wellbore, the tool mandrel with current and potential electrodes, and currentreturn and reference-potential electrodes. We also model the air to include the earth’'s surface in the simulation rather than the customary choice of imposing a boundary condition. To obtain apparent resistivity, we compute the voltage, i.e., potential difference between monitoring and reference electrodes. For the simulation, we use a twodimensional, goal-oriented and high-order self-adaptive hp finite element refinement strategy (h denotes the element size and p the polynomial order of approximation within each element) to obtain accurate simulation results. Numerical results indicate that distortion on the normal logging is greater when the reference potential electrode is closer to the borehole and distortions on long normal logging are larger than those on short normal logging.

Evaluation of the Utility of SSG Algorithm for Image Restoration of Landsat-8 (Landsat 8호 영상 복원을 위한 SSG 기법 활용성 평가)

  • Lee, Mi Hee;Lee, Dalgeun;Yu, Jung Hum;Kim, Jinyoung
    • Korean Journal of Remote Sensing
    • /
    • 제36권5_4호
    • /
    • pp.1231-1244
    • /
    • 2020
  • Landsat satellites are representative optical satellites that have observed the Earth's surface for a long-term, and are suitable for long-term changes such as disaster preparedness/recovery monitoring, land use change, change detection, and time series monitoring. In this paper, clouds and cloud shadows were detected using QA bands to detect and remove clouds simply and efficiently. Then, the missing area of the experimantal image is restorated through the SSG algorithm, which does not directly refer to the pixel value of the reference image, but performs restoration to the pixel value in the Experimental image. Through this study, we presented the possibility of utilizing the modified SSG algorithm by quantitatively and qualitatively evaluating information on variousl and cover conditions in the thermal wavelength band as well as the visible wavelength band observing the surface.

The Kwinana Shoreline Fumigation Experiment in Western Australia, Australia

  • Yoon, I.H.;Sawford, B.L;Manins, P.C.
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 한국환경과학회 1996년도 봄 학술발표회 초록집
    • /
    • pp.22-22
    • /
    • 1996
  • ;The Kwinana Shoreline Fumigation Experiment(KSFE) took place in Fremantle, WA, Australia between 23 January and 8 February, 1995. All measurement systems performed to expectation. The CSIRO DAR(Division of Atmospheric Research) LIDAR measured plume sections from near the Kwinana Power Station(KPS) stacks to up to about 5 km downstream. It also measured boundary layer aerosols and the structure of the boundary layer on some occasions. Both stages A and C of KPS were used as tracers at different times. Radiosonde and double theodolite sounding systems measured temperature, humidity, air pressure and wind structure at the coast(Woodman Point) and at the inland(ALCOA residue dump) site at intervals of roughly two hours. These were supplemented by mid afternoon soundings(radiosonde and single theodolite) by Department of Environmental Protection(DEP) at Swanbourne. The Flinders aircraft measured wind, turbulence and temperature structure of the atmospheric boundary layer, concentrations of $C0_2,\;0_3,\;S0_2\;and\;NO_x$ in the smoke plumes and surface radiation over both land and sea. CSIRO DCET(Division of Coal and Energy Technology) vehicle successfully interceptde many smoke plumes and using a range of tracers will be able to identify the various sources much of the time. Routine data from the DEP and Kwinana Industrial Council(KIC) air quality monitoring networks were also automatically logged. Murdoch University measured surface heat flux at Hope Valldy monitoring station and also at Wattleup monitoring station for the last five days. The heart of the LIDAR system is a Neodymium-doped Yttrium-aluminumgarnet(Nd:Y AG) laser operating at a fundamental wavelength of 1064 nm, with harmonics fo 532 nm and 355 nm. A small fraction of the laser beam is scattered back to the LIDAR, collected by a telescope and detedted by a photomultiplier tube. The intensity of the signal as a function of time is a measure of the particle concentration as a function of distance along the line of the laser shot. The results of nine days special field observations are summarized in detail.etail.

  • PDF

RETRIEVING AEROSOL AMOUNT FROM GEOSTATIONARY SATELLITE

  • Yoon, Jong-Min;Kim, Jhoon
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.232-235
    • /
    • 2006
  • Using 30 days of hourly visible channel data and DIScrete Ordinate Radiative Transfer (DISORT) model (6S), Aerosol optical depth (AOD) at $0.55{\mu}m$ was retrieved over the East Asia. In contrast with the AOD retrieval using low-earth-orbit satellites such as MODIS (Moderate-Res olution Spectroradiometer) or MISR (Multiangle Imaging SpectroRadiometer), this algorithm with geostationary satellite can improve the monitoring of AOD without the limitation of temporal resolution. Due to the limited number of channels in the conventional meteorological imager onboard the geostationary satellite, an AOD retrieval algorithm utilizing a single visible channel has been introduced. This single channel algorithm has larger retrieval error of AOD than other multiple-channel algorithm due to errors in surface reflectance and atmospheric property. In this study, the effects of manifold atmospheric and surface properties on the retrieval of AOD from the geostationary satellite, are investigated and compared with the AODs from AERONET and MODIS. To improve the accuracy of retrieved AOD, efforts were put together to minimize uncertainties through extensive sensitivity tests. This algorithm can be utilized to retrieve aerosol information from previous geostationary satellite for long-term climate studies.

  • PDF

Humidity Dependence Removal Technology in Oxide Semiconductor Gas Sensors (산화물 반도체 가스 센서의 습도 의존성 제거 기술)

  • Jiho Park;Ji-Wook Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제37권4호
    • /
    • pp.347-357
    • /
    • 2024
  • Oxide semiconductor gas sensors are widely used for detecting toxic, explosive, and flammable gases due to their simple structure, cost-effectiveness, and potential integration into compact devices. However, their reliable gas detection is hindered by a longstanding issue known as humidity dependence, wherein the sensor resistance and gas response change significantly in the presence of moisture. This problem has persisted since the inception of oxide semiconductor gas sensors in the 1960s. This paper explores the root causes of humidity dependence in oxide semiconductor gas sensors and presents strategies to address this challenge. Mitigation strategies include functionalizing the gas-sensing material with noble metal/transition metal oxides and rare-earth/rare-earth oxides, as well as implementing a moisture barrier layer to prevent moisture diffusion into the gas-sensing film. Developing oxide semiconductor gas sensors immune to humidity dependence is expected to yield substantial socioeconomic benefits by enabling medical diagnosis, food quality assessment, environmental monitoring, and sensor network establishment.

A Review on Remote Sensing and GIS Applications to Monitor Natural Disasters in Indonesia

  • Hakim, Wahyu Luqmanul;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • 제36권6_1호
    • /
    • pp.1303-1322
    • /
    • 2020
  • Indonesia is more prone to natural disasters due to its geological condition under the three main plates, making Indonesia experience frequent seismic activity, causing earthquakes, volcanic eruption, and tsunami. Those disasters could lead to other disasters such as landslides, floods, land subsidence, and coastal inundation. Monitoring those disasters could be essential to predict and prevent damage to the environment. We reviewed the application of remote sensing and Geographic Information System (GIS) for detecting natural disasters in the case of Indonesia, based on 43 articles. The remote sensing and GIS method will be focused on InSAR techniques, image classification, and susceptibility mapping. InSAR method has been used to monitor natural disasters affecting the deformation of the earth's surface in Indonesia, such as earthquakes, volcanic activity, and land subsidence. Monitoring landslides in Indonesia using InSAR techniques has not been found in many studies; hence it is crucial to monitor the unstable slope that leads to a landslide. Image classification techniques have been used to monitor pre-and post-natural disasters in Indonesia, such as earthquakes, tsunami, forest fires, and volcano eruptions. It has a lack of studies about the classification of flood damage in Indonesia. However, flood mapping was found in susceptibility maps, as many studies about the landslide susceptibility map in Indonesia have been conducted. However, a land subsidence susceptibility map was the one subject to be studied more to decrease land subsidence damage, considering many reported cases found about land subsidence frequently occur in several cities in Indonesia.

Performance monitoring of timber structures in underground construction using wireless SmartPlank

  • Xu, Xiaomin;Soga, Kenichi;Nawaz, Sarfraz;Moss, Neil;Bowers, Keith;Gajia, Mohammed
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.769-785
    • /
    • 2015
  • Although timber structures have been extensively used in underground temporary supporting system, their actual performance is poorly understood, resulting in potentially conservative and over-engineered design. In this paper, a novel wireless sensor technology, SmartPlank, is introduced to monitor the field performance of timber structures during underground construction. It consists of a wooden beam equipped with a streamlined wireless sensor node, two thin foil strain gauges and two temperature sensors, which enables to measure the strain and temperature at two sides of the beam, and to transmit this information in real-time over an IPv6 (6LowPan) multi-hop wireless mesh network and Internet. Four SmartPlanks were deployed at the London Underground's Tottenham Court Road (TCR) station redevelopment site during the Stair 14 excavation, together with seven relay nodes and a gateway. The monitoring started from August 2013, and will last for one and a half years until the Central Line possession in 2015. This paper reports both the short-term and long-term performances of the monitored timber structures. The grouting effect on the short-term performance of timber structures is highlighted; the grout injection process creates a large downward pressure on the top surface of the SmartPlank. The short and long term earth pressures applied to the monitored structures are estimated from the measured strains, and the estimated values are compared to the design loads.

Extraction of Ocean Surface Current Velocity Using Envisat ASAR Raw Data (Envisat ASAR 원시자료를 이용한 표층 해류 속도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • 제29권1호
    • /
    • pp.11-20
    • /
    • 2013
  • Space-borne Synthetic Aperture Radar(SAR) has been one of the most effective tools for monitoring quantitative oceanographic physical parameters. The Doppler information recorded in single-channel SAR raw data can be useful in estimating moving velocity of water mass in ocean. The Doppler shift is caused by the relative motion between SAR sensor and the water mass of ocean surface. Thus, the moving velocity can be extracted by measuring the Doppler anomaly between extracted Doppler centroid and predicted Doppler centroid. The predicted Doppler centroid, defined as the Doppler centroid assuming that the target is not moving, is calculated based on the geometric parameters of a satellite, such as the satellite's orbit, look angle, and attitude with regard to the rotating Earth. While the estimated Doppler shift, corresponding to the actual Doppler centroid in the situation of real SAR data acquisition, can be extracted directly from raw SAR signal data, which usually calculated by applying the Average Cross Correlation Coefficient(ACCC). The moving velocity was further refined to obtain ocean surface current by subtracting the phase velocity of Bragg-resonant capillary waves. These methods were applied to Envisat ASAR raw data acquired in the East Sea, and the extracted ocean surface currents were compared with the current measured by HF-radar.