주기적이고 지속적으로 자료를 얻을 수 있는 위성영상은 지표면의 변화를 모니터링 하기 위한 매우 효과적인 자료이다. 위성영상을 이용한 기존의 변화탐지 연구는 두 시점의 지표 특성을 각각 분석해 서로 비교하여 변화를 밝혀내는 연구를 주로 해왔다. 그러나 최근에는 연속성을 갖는 다중 시기 위성영상으로부터 전체적인 경향이나 단기적인 변화를 찾아내는 연구에 관심이 높아지고 있다. 이 연구에서는 다중 시기 위성영상을 분석하기 위해 3차원 웨이블릿 변환 기반의 기법을 제안하고 테스트해보았다. 3차원 웨이블릿 변환을 이용하면 자료의 중요한 특성은 보존하면서 차원을 줄이는 것이 가능하다. 또한 다중 시기의 자료로부터 주요 패턴을 간추려 내고 공간, 시간적으로 인접한 주변 화소와의 관계를 파악할 수 있다. 연구 결과, 3차원 웨이블릿 변환 기법은 전체적인 경향성이나 특별한 변화 특성을 빠른 시간내에 밝혀내는 데 유용할 뿐만 아니라 분해 방향에 따라 각기 다른 정보를 제공해 주는 하위 밴드를 통해 새로운 정보를 얻을 수 있을 것으로 기대된다.
Owing to the higher temporal resolution, meteorological satellite data is widely used to monitor the disasters happened on the earth's surface. However, the precision of identifying disaster information is limited by the poor spatial resolution. As known, GIS technology is good at processing and analyzing the geographic information. The result shows, integrating with GIS technology, the ability of monitoring forest fire using meteorological satellite data has been greatly improved.
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.460-464
/
2002
Multitemporal interferometric SAR has became an useful geodetic tool for monitoring Earth's surface deformation, generation of precise DEM, and land cover classification even though there still exist certain constraints such as temporal and spatial decorrelation effects, atmospheric artifacts and inaccurate orbit information. The Korea where nearly all areas are heavily vegetated, JERS-1 SAR has advantages in monitoring surface deformations and environmental changes in that it uses 4-times longer wavelength than ERS-l/2 or RADARSAT SAR system. For generating differential SAR interferogram and differential coherence image fer deformation mapping and temporal change detection, respectively, topographic phase removal process is required utilizing a reference inteferogram or external DEM simulation. Because the SAR antenna baseline parameter for JERS-1 is less accurate than those of ERS-l/2, one can not estimate topographic phases from an external DEM and the residual phase appears in differential interferogram. In this paper, we examined topographic phase retrieval method utilizing an external DEM. The baseline refinement is carried out by minimizing the differences between the measured unwrapped phase and the reference points of the DEM.
Chemical analysis, measurement of pumping rates of 60 production wells and depth to water tables of 57 monitoring wells were carried to protect depletion of water resources and deterioration of water quality for the commercial portable ground-water. Borehole depth of production well averages 149m(31 boreholes), casing depth is 28m(29 boreholes), production rate is 70 $m^3$/day and depth to water table of monitoring well is 23.26m, respectively. The geology of 60 wells can be divided into Daebo granite(20), Okchun metarmorphic complex(18), Precambrian granitic gneiss(15), Bulguksa granite(4), Cheju volcanics(2), Cretaceous sedimentary rock(1). Average electrical conductivity and pH are 152$\mu$S/cm, and 7.35, respectively. The contents of major cation and anion predominantly $Ca^{2+}$>N $a^{+}$>M $g^{2+}$> $K^{+}$ and HC $O_{3}$$^{-}$ >S $O_{4}$$^{2-}$>Cl ̄>F ̄. Water type is predominantly $Ca^{2+}$-HC $O_{3}$$^{-}$(81.7%). It's possible that water chemistry of some wells were affected not only by the geology of boreholes penetrated but by inflows of surface water or shallow ground-water. Therefore, it is strongly necessary to steadily monitor the water quality and hydrogeologic conditins of production wells.ells.ls.ells.
Accurate atmospheric correction is essential for the analysis of land surface and environmental monitoring. Aerosol optical depth (AOD) information is particularly important in atmospheric correction because the radiation attenuation by Mie scattering makes the differences between the radiation calculated at the satellite sensor and the radiation measured at the land surface. Thus, it is necessary to use high-quality AOD data for an appropriate atmospheric correction of high-resolution satellite images. In this study, we examined the Second Simulation of a Satellite Signal in the Solar Spectrum (6S)-based atmospheric correction results for the Sentinel-2 images in South Korea using raster AOD (MODIS) and single-point AOD (AERONET). The 6S result was overall agreed with the Sentinel-2 level 2 data. Moreover, using raster AOD showed better performance than using single-point AOD. The atmospheric correction using the single-point AOD yielded some inappropriate values for forest and water pixels, where as the atmospheric correction using raster AOD produced stable and natural patterns in accordance with the land cover map. Also, the Sentinel-2 normalized difference vegetation index (NDVI) after the 6S correction had similar patterns to the up scaled drone NDVI, although Sentinel-2 NDVI had relatively low values. Also, the spatial distribution of both images seemed very similar for growing and harvest seasons. Future work will be necessary to make efforts for the gap-filling of AOD data and an accurate bi-directional reflectance distribution function (BRDF) model for high-resolution atmospheric correction. These methods can help improve the land surface monitoring using the future Compact Advanced Satellite 500 in South Korea.
장기간에 걸친 전 지구적인 위성관측 지표면 알베도 자료는 전 지구 기후 및 환경의 변화 감시에 활발히 이용되고 있으며 그 활용도와 중요성이 크다. 우리나라의 경우 정지궤도위성 천리안위성 1호(Communication, Ocean and Meteorological Satellite, COMS) MI(Meteorological Imager) 센서와 천리안위성 2A호(GEO-KOMPSAT-2A, GK-2A) AMI (Advanced Meteorological Imager) 센서의 세대교체를 통해 지속적인 지표면 알베도 산출물의 확보가 가능하다. 그러나 COMS/MI 및 GK-2A/AMI의 지표면 알베도 산출물은 센서 및 알고리즘의 차이로 인해 산출물 간의 차이가 존재한다. 따라서 COMS/MI와 GK-2A/AMI 지표면 알베도 산출 기간을 확장하고 지속적인 기후변화 감시 연계성 확보를 위해 두 위성 산출물 간의 오차 분석이 선행되어야 한다. 본 연구에서는 COMS/MI 및 GK-2A/AMI 지표면 알베도 자료의 중복기간을 대상으로 지상관측자료 AERONET (Aerosol Robotic Network)와 타 위성자료 GLASS (Global Land Surface Satellite)와 함께 비교 분석하였다. 오차 분석 결과 AERONET과의 검증에서 COMS/MI의 평균 제곱근 오차(Root Mean Square Error, RMSE)가 0.043로 GK-2A/AMI의 RMSE인 0.015보다 높게 나타났다. 또한 GLASS와 비교하였을 때 COMS/MI의 RMSE는 0.029로 GK-2A/AMI의 0.038보다 낮게 나타났다. 이러한 오차특성을 이해하고 COMS/MI 및 GK-2A/AMI의 지표면 알베도 자료를 사용할 때 장기간 기후변화 감시에 적극적으로 활용할 수 있을 것이다.
A compact imaging spectrometer (COMIS) for use in the STSAT3 microsatellite is currently under development. It is scheduled to be launched into a low Sun-synchronous Earth orbit (${\sim}700km$) by the end of 2010. COMIS was inspired by the success of CHRIS, which is a small hyperspectral imager developed for the ESA microsatellite PROBA. COMIS is designed to achieve nearly equivalent imaging capabilities of CHRIS in a smaller (65 mm diameter and 4.3 kg mass) and mechanically superior (in terms of alignment and robustness) package. Its main operational goal will be the imaging of Earth's surface and atmosphere with ground sampling distances of ${\sim}30m$ at the $18{\sim}62$ spectral bands ($4.0{\sim}1.05{\mu}m$). This imaging will be used for environmental monitoring, such as the in-land water quality monitoring of Paldang Lake, which is located next to Seoul, South Korea. The optics of COMIS consists of two parts: imaging telescope and dispersing relay optics. The imaging telescope, which operates at an f-ratio of 4.6, forms an image (of Earth's surface or atmosphere) onto an intermediate image plane. The dispersion relay optics disperses the image and relay it onto a CCD plane. All COMIS lenses and mirrors are spherical and are made from used silica exclusively. In addition, the optics is designed such that the optical axis of the dispersed image is parallel to the optical axis of the telescope. Previous efforts focused on manufacturing ease, alignment, assembly, testing, and improved robustness in space environments.
The major source of carbon monoxide (CO) at the Earth's surface is the incomplete combustion of biomass and fossil fuels. Because the global lifetime of CO is about two months, it can be used as a tracer for pollution from anthropogenic activities and biomass hurtling. In this paper, we introduced the principle and algorithm of the Measurement of Pollution in the Troposphere (MOPITT) instrument for global CO monitoring. The MOPITT instrument, which was launched on the Satellite Terra in 1999, measures CO column and mixing ratio based on gas correlation radiometry. CO levels can be determined by a retrieval algorithm based on the maximum likelihood method minimizing the difference between observed and modeled radiances. MOPITT level 2 data (HDF format) can be downloaded through the Earth Observing System (EOS) data gateway of NASA. ASCII files of CO parameters can be extracted from HDF files, and then temporal and spatial distributions can be obtained. Finally, we showed an example of CO monitoring in April 2000. The locations of forest fires and distribution of MOPITT CO clearly indicated that not only anthropogenic emissions but also forest fires play an important role in CO levels and global CO distribution. Our introduction to MOPITT and the example of MOPITT data interpretation would be helpful for scientists who want to use the EOS data.
극궤도 위성(Aura)에 탑재되어 운용 중인 Ozone Monitoring Instrument (OMI)를 이용하여 동아시아 지역에 대한 등가 람버시안 반사도(Lambertian Equivalent Reflectance; LER)를 유도하였다. 본 연구의 LER 기후값(2004년 10월-2007년 9월)은 기존 OMI 및 MODIS 결과와 다음 대기환경 변수의 관점에서 비교분석되었다. 파장(자외선, 가시광선), 지표 특성(육지, 해양), 그리고 구름 제거. 자외선 및 가시광선 파장역(328-500 nm)에서 산출된 LER은 최소 반사도뿐만 아니라 세 종류 하위 평균(1, 5, 10% 이내)으로 산출되었다. 이들 중에 10% 평균값이 OMI 결과와 가장 잘 일치하였다. 여기서 상관계수는 0.88, 평균 제곱근 오차는 1.0%. 그리고 평균 편차는 -0.3%이었다. 10% 평균값과 기존 OMI LER값은 해양에서 가시광선에 비하여 자외선 영역에서 큰(~2%) 반면에 육지에서는 작게(~1%) 나타났다. 또한 파장 및 지표 특성에 따른 LER 변동폭은 육지 및 가시광선 조건에서, 특히 만년설 및 사막 지역에서 크게 나타났다(~3%). 최소 반사도값은 해양 및 육지의 표본 지역에서 MODIS에 비하여 약 1.4% 과대 산출되었다. 이러한 원인은 고해상도 MODIS 자료에서의 효과적인 구름 제거에 있다고 분석되었다. MODIS에 대한 10% 평균값의 상대 오차는 기존 OMI 산출물에 비하여 해양에서 작았으나(-0.6%) 육지에서는 컸다(1.5%). OMI 산출물 경우에 육지에서의 작은 상대 오차는 Landsat 자료 이용한 효과적인 구름 제거에 있다고 추정되었다. 본 연구는 정지궤도 환경위성(예, GEMS) 관측을 이용한 지면반사도 산출에 기여할 것으로 기대된다.
인공위성은 넓은 지역에 대한 전 세계의 정보를 획득하는데 유용하지만, 좁은 지역에 대한 적시적소에 촬영하는 데는 한계가 있다. 이러한 단점을 극복하기 위하여 본 연구에서는 항공기 원격탐사 시스템을 구축하였다. 항공기 원격탐사시스템은 SAR센서와 열적외선 센서로 구성되어 있으며, 획득된 자료의 방사 및 기사보정을 위하여 GPS, IMU, 온도/습도계 등도 설치하였다. SAR영상은 표면 거칠기에 따라 민감하게 반응하여 밝기 값이 달라지게 되며, 해양에서는 바람에 의해 쉽게 생성 되는 표면 장력파의 진폭이 이러한 표면 거칠기를 야기한다. 따라서 정량화된 SAR의 후방산란과 해상풍 사이의 관계식을 통해 해상풍 추출이 가능하다. 한편, 열적외선 센서는 물체의 온도를 측정하는데 유용하며, 물체와 센서 사이의 대기에 의한 효과를 보정한 후 수온 추출이 이루어진다. 이 두 센서를 탑재한 항공기로 서해안 일대를 4차례 시험비행을 수행하였으며, 이로부터 획득된 SAR 및 열적외선 영상의 품질이 연안환경 모니터링 및 해양기상 자료 추출에 충분함을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.