• Title/Summary/Keyword: early-age concrete

Search Result 584, Processing Time 0.025 seconds

Creep effects on dynamic behavior of concrete filled steel tube arch bridge

  • Ma, Y.S.;Wang, Y.F.;Mao, Z.K.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.3
    • /
    • pp.321-330
    • /
    • 2011
  • Long-term properties of concrete affect structures in many respects, not excepting dynamic behaviors. This paper investigates the influence of concrete creep on the dynamic behaviors of concrete filled steel tube (CFT) arch bridges, by means of combining the analytical method for the creep of axially compressed CFT members, which is based on Model B3 for concrete creep, with the finite element model of CFT arch bridges. By this approach, the changes of the stress and strain of each element in the bridge with time can be obtained and then transformed into damping and stiffness matrices in the dynamic equation involved in the finite element model at different times. A numerical example of a long-span half-through CFT arch bridge shows that creep influences the natural vibration characteristics and seismic responses of the bridge considerably, especially in the early age. In addition, parameter analysis demonstrates that concrete composition, compressive strength and steel ratio have an obvious effect on the seismic response of the CFT arch bridge.

A Experimental Study on the Properties of Concrete Strength According to Curing Condition (양생조건에 따른 콘크리트 강도 특성에 관한 실험적 연구)

  • Joung Won Seoup;Kim Kang Sik;Park Jae Woo;Noh Jea Myoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.441-444
    • /
    • 2005
  • Our country has experienced variations in temperature as belong to the area of the continental climate that shows four significant seasons. These occur immense difficulty on the period, cost, quality of construction. As the hydration of cement processes, the strength of concrete is developed. In order to improve the quality of concrete, various conditions including temperature and humidity should be maintained appropriately and concrete itself should be cured sufficiently. In the early age, the strength of concrete is developed remarkably. However, the hydration is accelerated too much in high temperature or delayed too much in low temperature, so the quality can be changed and It can fail to get the objective strength. This paper aims to offer the data, necessary to the quality control handbook.

  • PDF

Physical Properties of Concrete with the Contents of CSA Expansive Admixture (CSA계 혼화재 치환율 병화에 따른 콘크리트의 물리적 성질)

  • Pei Chang Chun;Park Young Shin;Lee Mun Hwan;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.369-372
    • /
    • 2005
  • This study is about physical properties of concrete with changing displacement ratio of calcium sulfa aluminates(CSA) type admixture. Firstly, test shows that as displacement ratio of CSA increases and setting properties changes, fluidity and air contents decreases. In water to binder ratio 35$\%$ and 45$\%$, concrete using the cement replacing CSA 4$\%$ by volume shows that bleeding decreases 94.7$\%$ and 74.3$\%$ respectively, compared with plain concrete. In addition, setting time was promoted around 3 to 6 hour and 1 to 4 hour respectively. For harden concrete, increase of displacement ratio caused tendency of higher compressive strength as OPC has at early age. Replacing higher CSA admixture led to reduce of drying shrinkage.

  • PDF

Thermal Stress Analysis on the Heat of Hydration Considering Creep and Shrinkage Effects of Mass Concrete (크리이프와 건조수축영향을 고려한 매스콘크리트에서 수화열에 대한 온도응력해석)

  • 김진근;김국한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.107-113
    • /
    • 1992
  • The heat of hydration of cement the causes the internal temperature rise at early age, particulary in massive concrete structures such as a mat-slab of nuclear reactor building or a dam or a large footing. As the result of the temperature rise and restraint of foundation, the thermal stress enough to induce concrete cracks can occur. Therefore, the prediction of the thermal stress is very important in the design and construction stages in order to control the cracks developed in massive concrete structures. And, more creep and shrinkage take place at elevated temperatures in young concrete, Thus the effect of creep and shrinkage must be considered for checking the safety and servicebility(crack, durability and leakage).

  • PDF

Performance test of Concrete IoT Management System for concrete early-age quality control (콘크리트 초기 품질관리를 위한 CIMS의 개발성능 Test)

  • Lee, Young-Jun;Choi, Yoon-Ho;Seo, Hang-Goo;Hyun, Seung-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.161-162
    • /
    • 2019
  • The aim of the research is analyzing the performance of the concrete IoT management system invented with similar technique from 'G' company to certify the performance of CIMS. As a results, the compressive strength assessing performance was compared. Since both systems assess concrete compressive strength with maturity method based on measured concrete temperature, both systems measured concrete temperature similarly, and maturity was calculated similarly. Therefore, the assumed compressive strength values were similar for both systems. Therefore, through the test, compressive strength assessing performance of CIMS was considered as a similar level of the 'G' company's system. Furthermore, it is considered that the CIMS has an additional advantage of reusability, adding capability of additional sensor, and wider range of Bluetooth communication.

  • PDF

Variation of Bilinear Stress-Crack Opening Relation for Tensile Cracking of Concrete at Early Ages (초기재령에서 콘크리트 인장균열에 대한 쌍선형 응력-균열 개구 관계의 변화)

  • Kwon, Seung-Hee;Choi, Kang;Lee, Yun;Park, Hong-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.427-435
    • /
    • 2010
  • One of the most vulnerable properties in concrete is tensile cracking, which usually happens at early ages due to hydration heat and shrinkage. In order to accurately predict the early age cracking, it needs to find out how stress-crack opening relation is varying over time. In this study, inverse analyses were performed with the existing experimental data for wedge-splitting tests, and the parameters of the softening curve for the stress-crack opening relation were determined from the best fits of the measured load-CMOD curves. Based on the optimized softening curve, variation of fracture energy over time was first examined, and a model for the stress-crack opening relation at early ages was suggested considering the found feature of the fracture energy. The model was verified by comparisons of the peak loads, CMODs at peak loads, and fracture energies obtained from the experiments and the inverse analysis.

Characterization and Early Age Physical Properties of Ambient Cured Geopolymer Mortar Based on Class C Fly Ash

  • Kotwal, Ashley Russell;Kim, Yoo Jae;Hu, Jiong;Sriraman, Vedaraman
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • The critical element for sustainable growth in the construction industry is the development of alternative cements. A new technological process called geopolymerization provides an innovative solution, and the presence of aluminum and silicon oxides in fly ash has encouraged its use as a source material. Many previous investigations have involved curing the binder in a heated environment. To reduce energy consumption during the synthesis of geopolymers, the present study investigated the properties of ambient cured geopolymer mortar at early ages. An experimental program was executed to establish a relationship between the activator composition and the properties of geopolymer mortar in fresh and hardened states. Concentrations of sodium hydroxide and sodium silicate were ascertained that are advantageous for constructability and mechanical behavior. Scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction techniques were also used to characterize the material. Test results indicate that there is potential for the concrete industry to use fly ash based geopolymer as an alternative to portland cement.

Study on Cracking Causes and Patterns in Median Barrier and Guardrail Concrete in RC Bridge (콘크리트 교량 방호벽의 균열원인 및 패턴 분석에 대한 연구)

  • Choi, Se-Jin;Choi, Jung-Wook;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • Concrete guide rail and median barrier are an attached RC member, however they are vulnerable to cracking due to slip form construction and large surface of member. In this study, causes and pattern of cracking are analyzed through assessment and NDT (Non-Destructive Technique) evaluation for concrete guide rail and median barrier on highway structure. For this work, analysis on drying shrinkage and hydration heat are performed considering installation period, and plastic shrinkage is also analyzed considering their environmental conditions. From the evaluation, plastic settlement around steel location, drying/ plastic shrinkage, and aggregate segregation are inferred to be the main causes of cracking in the structures. The crack causes and patterns are schematized and techniques of crack-control are suggested. Furthermore concrete guide rail/ median barrier in the bridge on the sea are vulnerable to cracking at early age so that special attentions should be paid at the stages of material selection and construction.

The statistical method for quantitative analysis of hydration heat and autogenous shrinkage of concrete (콘크리트 수화발열 및 자기수축 특성의 정량적 분석을 위한 통계적 방법)

  • Lee, Eui-Bae;Lee, Hyung-Jun;Koo, Kyung-Mo;Na, Chul-Sung;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.645-648
    • /
    • 2008
  • In this study, to evaluate the correlation between hydration heat and autogenous shrinkage of high strength concrete in early age, statistical method present numerically hydration heat and autogenous shrinkage was studied. First of all, hydration heating velocity and autogenous shrinking velocity as quantitative coefficients which represent the main properties of hydration heat and autogenous shrinkage were proposed. Two coefficients were calculated by statistical analysis and were equal with the regression coefficient. To verify the validity of the proposed statistical analysis method, data of hydration heat and autogenous shrinkage gathered by a real experiment were analyzed by it. In results, properties of hydration heat and autogenous shrinkage of high strength concrete in early age were analyzed quantitatively. Also evaluation and comparison of the correlation between hydration heat and autogenous shrinkage with numerical value were possible.

  • PDF

A Study on the Development of Flat-Ring Type Restrained Test Method and Performance Evaluation for Evaluating Shrinkage Cracking Properties of Concrete in Early Age (콘크리트 초기 수축균열특성 평가를 위한 판상-링형 구속시험방법의 성능평가에 관한 연구)

  • Kim, Gyu-Yong;Choi, Hyeong-Gil;Lee, Eui-Bae;Nam, Jeong-Soo;Han, Min-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.188-196
    • /
    • 2009
  • In Concrete, shrinkages occur like plastic shrinkage and drying shrinkage in the early age because of evaporation and transfer of moisture. Within the country, the crack test standardized by KS is used to test the drying shrinkage of the concrete by using the restricted drying shrinkage of Dumbbell type mold, but this test is for the cracking-point and the restricted shrinkage stress. Thus it is difficult to valuate the crack quantitative test. In this study, it is intended to develop the Flat-ring type restrained test method for the shrinkage deformation movement of the concrete and to provide the quantitative data for evaluating the cracks in concrete. And it suggest the proper specimen diameter and quantitative test method about shrinkage crack properties on Flat-ring type restrained test method. And Verified the suitability.