References
- ASTM C1064 (2011). Standard test method for temperature of freshly mixed hydraulic-cement concrete. West Conshohocken, PA: ASTM International.
- ASTM C1437 (2007). Standard test method for flow of hydraulic cement mortar. West Conshohocken, PA: ASTM International.
- ASTM C136 (2006). Standard test method for sieve analysis of fine and coarse aggregates. West Conshohocken, PA: ASTM International.
- ASTM C33 (2011). Standard specification for concrete aggregates. West Conshohocken, PA: ASTM International.
- ASTM C109 (2011). Standard test method for compressive strength of hydraulic cement mortars. West Conshohocken, PA: ASTM International.
- ASTM C128 (2012). Standard test method for density, relative density (specific gravity) and absorption of fine aggregate. West Conshohocken, PA: ASTM International.
- ASTM C618 (2012). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken, PA: ASTM International.
- Davidovits, J. (1994). Global warming impact on the cement and aggregates industries. World Resource Review, 6(2), 263-278.
- Davidovits, J. (2011). Geopolymer chemistry & applications (3rd ed.). Saint-Quentin: Institut Geopolymere.
- Guo, X., Shi, H., & Dick, W. A. (2010). Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement & Concrete Composites, 32, 142-147. https://doi.org/10.1016/j.cemconcomp.2009.11.003
- Hanle, L. J., Jayaraman, K. R., & Smith, J. S. (2011). CO2 emissions profile of the U.S. cement industry. Washington, DC: United States Environmental Protection Agency.
- Jaarsveld, J., Deventer, J., & Lukey, G. (2002). The effect of composition and temperature on the properties of fly ashand kaolinite-based geopolymers. Chemical Engineering Journal, 89, 63-73. https://doi.org/10.1016/S1385-8947(02)00025-6
- Jiang, W., & Roy, D. M. (1992). Hydrothermal processing of new fly ash cement. American Ceramic Society Bulletin, 71(4), 642-647.
- Leelathawornsuk, Y. (2009). The role of sodium hydroxide concentration in fly ash-based geopolymer. Bangkok, Thailand: Kasetsart University.
- Mindess, S., & Young, J. F. (1981). Concrete. Englewood Cliffs, NJ: Prentice Hall.
- Mustafa, A. M., Kamarudin, H., Omar, A. K., Norazian, M. N., Ruzaidi, C. M., & Rafiza, A. R. (2011). The effect of alkaline activator ratio on the compressive strength of fly ash-based geopolymers. Australian Journal of Basic and Applied Sciences, 5(9), 1916-1922.
- PCA (2012). Green in practice 102-concrete, cement and CO2. Retrieved from Portland Cement Association: www.concretethinker.com/papers.aspx?docid=312.
- Pearce, F. (1997). The concrete jungle overheats. New Scientist, 155(2091), 14.
- Popovics, S. (1982). Fundamentals of portland cement concrete: A quantitative approach. New York, NY: Wiley.
- Seal, S., Hench, L. L., Moorthy, S. B., Reid, D., & Karakoti, A. (2011). United States of America Patent No. US 2011/0112272 A1.
- Silverstrim, T., Martin, J., & Rostami, H. (1999). Geopolymeric fly ash cement. In J. Davidovits, R. Davidovits & C. James (Eds.), Geopolymer international conference (pp. 107-108). Saint-Quentin: Institute Geopolymere.
- Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P., & Chindaprasirt, P. (2011). NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel, 90, 2118-2124. https://doi.org/10.1016/j.fuel.2011.01.018
- USGBC. (2005). LEED for new construction & major renovations. Retrieved from United States Green Building Council: www.usgbc.org/ShowFile.aspx?DocumentID=1095.
- Vijai, K., Kumutha, R., & Vishnuram, B. G. (2010). Effect of types of curing on strength of geopolymer concrete. International Journal of the Physical Sciences, 5(9), 1419-1423.
- Worrell, E., & Galitsky, C. (2008). Energy efficiency improvement and cost saving opportunities for cement making. Washington, DC: Environmental Protection Agency.
Cited by
- Investigation on the Effectiveness of Aqueous Carbonated Lime in Producing an Alternative Cementitious Material vol.10, pp.1, 2016, https://doi.org/10.1007/s40069-016-0129-8
- Chemical and Physical Characterization of Fly Ash as Geopolymer Material vol.97, pp.None, 2015, https://doi.org/10.1051/matecconf/20179701031
- Development of Fly Ash- and Slag-Based Geopolymer Concrete with Calcium Carbonate or Microsilica vol.30, pp.12, 2015, https://doi.org/10.1061/(asce)mt.1943-5533.0002527
- Changes in color and thermal properties of fly ash cement mortar after heat treatment vol.165, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2018.01.029
- Analysis of Active Ion-Leaching Behavior and the Reaction Mechanism During Alkali Activation of Low-Calcium Fly Ash vol.12, pp.1, 2015, https://doi.org/10.1186/s40069-018-0282-3
- Workability and Strength Properties of Class C Fly Ash-Based Geopolymer Mortar vol.258, pp.None, 2015, https://doi.org/10.1051/matecconf/201925801009
- The Binder Index - A Parameter That Influences the Strength of Geopolymer Concrete vol.27, pp.1, 2015, https://doi.org/10.2478/sjce-2019-0005
- Fresh and Hardened Properties of Fly Ash-Slag Blended Geopolymer Paste and Mortar vol.13, pp.1, 2019, https://doi.org/10.1186/s40069-019-0360-1
- Investigating Various Factors Affecting the Long-Term Compressive Strength of Heat-Cured Fly Ash Geopolymer Concrete and the Use of Orthogonal Experimental Design Method vol.13, pp.1, 2015, https://doi.org/10.1186/s40069-019-0375-7
- Study on mechanical properties of alkali activated binary blended binder containing steatite powder and fly ash / GGBS vol.872, pp.None, 2015, https://doi.org/10.1088/1757-899x/872/1/012153
- Evaluation of protective coatings for geopolymer mortar under aggressive environment vol.9, pp.3, 2020, https://doi.org/10.12989/amr.2020.9.3.219
- Critical Review of Recycled Aggregate Concrete Properties, Improvements, and Numerical Models vol.32, pp.11, 2015, https://doi.org/10.1061/(asce)mt.1943-5533.0003394
- A Review of Recent Developments and Advances in Eco-Friendly Geopolymer Concrete vol.10, pp.21, 2020, https://doi.org/10.3390/app10217838
- Flexural Capacity and Behaviour of Geopolymer Concrete Beams Reinforced with Glass Fibre-Reinforced Polymer Bars vol.14, pp.1, 2015, https://doi.org/10.1186/s40069-019-0389-1
- Multifunctional behavior of CNT- and CB-based composite beams vol.296, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2021.123453
- Improvement of High-Volume Fly Ash Cementitious Material Using Single Alkali Activation vol.15, pp.1, 2021, https://doi.org/10.1186/s40069-021-00482-9