• Title/Summary/Keyword: early maturing cultivar

Search Result 96, Processing Time 0.018 seconds

Effect of Transplanting Date on the Growth, Yield, and Occurrence of Viviparity in Floury Endosperm Rice Cultivars in the Chungbuk Province (충북지역 쌀가루용 벼 품종의 이앙시기가 생육, 수량 및 수발아 발생에 미치는 영향)

  • Lee, Chae-Young;Choi, Ye-Seul;Lee, Hee-Du;Jeong, Taek-Gu;Kim, Ik-Jei;Kim, Chung-Kon;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.284-293
    • /
    • 2020
  • Rice consumption in Korea has been decreasing as the eating habits of the Korean people have diversified with rapid economic growth. Recently, floury endosperm rice cultivars were developed to boost rice consumption and replace wheat flour consumption with rice flour, which is vulnerable to viviparity under wet weather during the grain-filling stage because of its loosely packed starch granule structures. To overcome this limitation, it is necessary to find a suitable rice transplanting date to produce high-quality rice flour by altering the heading ecology type and changing the cultivation time by region. We examined four floury endosperm rice cultivars (FERC) in the Cheongju (central plain area) and Boeun (mid-mountainous area) regions of Korea from 2017 to 2019. Of the FERCs, the mid-late maturing types (MMT) Seolgaeng (SG), Hangaru (HGR), and Shingil (SGL) exhibited high yield and yield components after transplanting May 30 in both regions; the early maturing type (EMT) Garumi 2 (GRM2) also exhibited high yield after transplanting June 20 in Cheongju. In addition, MMTs showed the same tendency as the characteristics shown in Cheongju when grown in the Boeun region, and EMT displayed high yield and yield components after transplanting June 10. The FERCs could easily present pre-harvest sprouting in the rainy season during the grain-filling stage after 20 days post-heading because the mean temperature and frequency of more three-day rainfalls have increased over the last 5 years from the previous annual averages. Viviparity of HGR and GRM2 decreased as the transplanting date was delayed, with decreases of 2.3%-4.6% in HGR and 11.9%-23.1% in GRM2 according to the region. SGL was generally resistant to viviparity because of the Tongil type. To minimize pre-harvest sprouting and produce high yield of rice flour in the Chungbuk province, the most suitable transplanting time was the end of May in MMT and the middle and end of June in EMT.

Optimal Transplanting Date for Rice Flour Cultivars to Avoid Occurrence of Pre-harvest Sprouting in Gangwon Province (강원지역 쌀가루용 벼의 이앙시기가 수발아 발생에 미치는 영향)

  • Lee, Ji-Woo;Cho, Youn-Sang;Kim, Yong-Bok;Jung, Jung-Su;Jeong, Young-Pyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.17-26
    • /
    • 2022
  • Rice is one of the three major grains globally, and has been used as a staple food in Asian countries for a long time. In recent years, with the increase in the use of processed rice, the development and distribution of rice flour varieties have become a research focus. However, rice flour varieties are susceptible to pre-harvest sprouting (PHS). In this study, the optimal transplanting date for rice flour varieties for maximum yield production with PHS avoidance was examined. Four rice flour varieties with different maturity types (early maturing type, Garumi2 and medium-late maturing type, Seolgaeng, Hangaru, and Singil) were selected. The field experiment was conducted in Chuncheon (Central Plain area) and Cheorwon (Northern Plain area), Gangwon Province, Republic of Korea, from 2017 to 2019. The transplanting dates used were May 10, May 20, May 30, June 10, and June 20 in Chuncheon and April 30, May 10, May 20, May 30, and June 10 in Cheorwon. In Chuncheon, late transplantation decreased PHS in Garumi2. In Cheorwon, PHS in Garumi2 decreased with transplantation dates after May 20. The PHS decreased in Seolgaeng, Hangaru, and Singil with late transplantation in Chuncheon and Cheorwon. The optimal transplanting date for maximum yield production while avoiding PHS for Garumi2 was estimated to be June 10 in Chuncheon and May 25 in Cheorwon; for Seolgaeng, the optimal transplanting dates were May 20 in Chuncheon and May 15 in Cheorwon; for Hangaru, it was estimated to be May 30 in Chuncheon and May 15 in Cheorwon; and for Singil, the optimal dates were May 25 in Chuncheon and May 15 in Cheorwon.

Compatibility of Double Cropping of Winter Wheat - Summer Grain Crops in Paddy Field of Southern Korea (남부지역 논의 밀 이모작에서 하계 곡실작물 도입의 적합성)

  • Seo, Jong-Ho;Hwang, Chung-Dong;Oh, Seong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.18-28
    • /
    • 2021
  • The growth period and productivity of cropping system of winter wheat-rice, winter wheat-bean and winter wheat-grain corn for 4 years from 2015 to 2018 were compared at the experimental field of National Institute of Crop Science in Miryang city. The harvest period of winter wheat was in mid-June, and summer crops were sown (transplanted) in late June. In transplanting of rice in late June, there was no difficulty in securing the heading of panicle and the yield of rice, but there was a lot of trouble in sowing wheat in proper time because the harvest time of rice was delayed to early November due to late maturity of rice, particularly in the mid-late maturing cultivar. There was no problem in soybean planting after winter wheat because the proper period of soybean planting is late-June. In addition, there was no problem in winter wheat sowng after soybean because the maturity period of soybean was mid-October. Selection of grain maize in double cropping with winter wheat in terms of growing periods, was desirable because grain maize had the fastest maturity among summer crops. In double cropping of winter wheat-summer crops, wheats combined with soybean and grain maize showed stable yields during three years, but there was a risk of yield declines in the wheat combined with rice in heavy rainfall year. It was possible to secure high yields in three summer crops as yields of rice, soybean, and corn were 600, 350, and 800 kg/10a, respectively. Summer crops with medium maturity was recommended because of no significant difference in yield between medium maturity and medium-late maturity cultivar. Soil physical properties were improved in soils cultivated with soybean and grain maize. Therefore, It was thought that double cropping systems of winter wheat with soybean and grain maize were superior to that of winter wheat with rice in terms of connecting period between winter wheat - summer crops and improvement of soil physical properties, and total income, particularly in soybean.

Effect of GA Paste on Physiological Fruit Drop and Fruit Characteristics in 'Formosa' Plums (Prunus salicina Lindl.) (GA 도포제 처리가 '포모사' 자두의 생리적 낙과 및 과실 특성에 미치는 영향)

  • Yun, Seok Kyu;Bae, Haejin;Yoon, Ik Koo;Nam, Eun Young;Kwon, Jung Hyun;Jun, Ji Hae;Chung, Kyeong Ho
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.309-315
    • /
    • 2013
  • Fruit drop is a serious problem in plum trees during fruit development after pollination and fertilization. In order to increase fruit yields, physiological fruit drop in plum trees at the early stages of fruit development must be reduced. In this study, the effect of gibberellic acid paste (GA paste 2.7%) applied on 'Formosa' plum was determined to reduce fruit drop. GA paste was applied one time on one set of the fruit stalk at 3 days after full bloom (DAFB), and on another set of the fruit stalk at 13 DAFB, and then the fruit-set rate was observed at 70 DAFB. GA paste application increased the fruit-set rate up to 61%. In 'Formosa', the time of GA application had a strong influence on reducing fruit drop. GA application increased the fruit-set rate up to 61% in treatments at 3 DAFB, and to 15% in treatments at 13 DAFB when the fruit-set rate was 5% in the control group. The same results were observed in 'Honey Red' and 'Akihime' plums. GA application impacted on fruit enlargement in the 'Formosa' cultivar, compared with the control trees, which had no GA application. The rate of fruit enlargement with GA application was similar to that of the control fruits until 70 DAFB, whereas the enlargement rate was slightly higher in the GAtreated trees than the control from 70 DAFB until harvest. In GA-treated fruit, fruit weight increased more than in the control, while total acidity and firmness was lower than in the control group. Additionally, GA application accelerated sucrose increase in maturing fruit. Our data indicated that GA paste application can reduce fruit drop, and subtly promote fruit enlargement and maturation in plum trees.

Study on Cultural Method of Summer Buckwheat Planted in Spring (여름메밀의 춘파재배법 연구)

  • Keun-Yong Park;Rae-Kyung Park;Byeong-Han Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.2
    • /
    • pp.149-154
    • /
    • 1992
  • Buckwheat has been a popular favorite food crop in Korea for a long time. The objective of the study was to investigate the effects of climatic conditions and cultural methods on grain yields of summer buckwheat variety Sinnong 1 planted during the spring season in Suwon, Korea from 1989 to 1991. Frost minimum temperature of late April was -0.3$^{\circ}C$ in 1990 being very low as compared with 3.7$^{\circ}C$ of the normal year, and affected early growth of the seedlings emerging from the soil surface. In late May of 1990, the frost minimum temperature was 7.3$^{\circ}C$ being low as compared with 8.8$^{\circ}C$ of the normal year, and also induced cold injury to fertilization and grain filling. Total precipitation 374.5mm of mid and late June, 1990 provided serious damage to the grain filling and maturing buckwheat seeds and along with causing seed sprouting before harvest. However, the climates of 1989 and 1991 were very good for the growth and development of spring-sown buckwheats. When summer buckwheat cultivar Sinnong 1 was planted on April 20, 1989, its highest grain yields 268-292kg /10a were harvested from the plots of seeding rate 8kg /10a, drill seeding and polyethylene film mulching, and the mean grain yield of the plots was 238kg /10a in 1989, but 64.3kg in Suwon, and 40.2kg /10a in Muan in 1990. In 1991 maximum grain yield 277kg /10a was produced from the April 15 planted and vinyl-mulched plot, and 255kg /10a from the April 25 planted and non-mulched plot. Herbicide Alachlor-sprayed plots produced lower grain yields than no weed control and manual weeding plots. Mechanized drill-seeding saved 83~84% in planting hours as compared with manual broadcasting 21.6 hours /ha, and produced 9% more in grain yields from the two-season croppings of mechanized drill-seeding culture being 364kg /10a in total yields per year.

  • PDF

A New High Qualilty Rice Variety "Pungmi 1" with Short culm and Multiple resistance to Diseases (중생 고품질 단간 복합내병성 벼 품종 "풍미 1호")

  • Park, No-Bong;Kwak, Do-Yeon;Yeo, Un-Sang;Lee, Jeom-Sig;Song, You-Chun;Chang, Jae-Ki;Lee, Jong-Hee;Nam, Min-Hee;Kim, Myeong-Ki;Lim, Sang-Jong;Hwang, Hung-Goo;Shin, Mun-Sik;Oh, Byeong-Gen;Ku, Yeon-Chung;Kim, Ho-Yeong;Lee, Seong-Hee
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.520-524
    • /
    • 2009
  • A newly developed rice variety "Pungmi 1" is a japonica rice(Oryza sativa L.) with high grain quality and multi-resistant to diseases. It was developed by the rice breeding team of Yeongnam Agricultural Research Institute (YARI), RDA. in 2004. This variety derived from a cross between "YR13616Acp 1", having short culm and multi-resistance to biotic stresses and "Milyang 122" with good grain quality. It has short stature of 73cm in culm length and mid-early flowering date of Aug. 13. This variety is moderately resistant to leaf blast showing durable resistance of lower 10% diseased leaf araea in sequential planting meothod. Milled rice kernel of "Pungmi 1" is translucent, clear in chalkness and good at eating quality in panel test. Milling recovery and head rice ratios were comparable to Milyang 122, while it has low protein content. The milled rice yield potential of "Pungmi 1" is about 5.59 MT/ha at ordinary fertilizer level of local adaptability test. This cultivar would be adaptable to Yeongnam inland plains and southern coastal areas of Yeongnam province at ordinary transplanting as well as after barly cultivation.