• Title/Summary/Keyword: early hardening

Search Result 136, Processing Time 0.037 seconds

A Study on the Convection Heat Transfer Coefficient in Concrete at Early Ages (초기재령 콘크리트의 외기대류계수에 관한 연구)

  • 김진근;전상은;양은익;송영철;방기성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.151-156
    • /
    • 1997
  • The setting and hardening of concrete is accompanied by nonlinear temperature distribution caused by developing heat of cement hydration. expecially at early ages, nonlinear temperature distribution has a large influence n the crack evaluation. So the need to predict the exact temperature history in concrete has led to the examination thermal properties. In this study, the convection heat transfer coefficient is experimentally investigated which is one of the thermal properties in concrete. Furthermore, the result of the experiment is compared with those of analysis by the program which is developed in KAIST. As a result of comparison, the analytical results are in good approximation with experimental data.

  • PDF

Setting and Hardening of Portland Cement Mortar Investigated with Wave Reflection Factor (WRF를 이용한 모르터의 응결 및 경화 예측)

  • ;Thomas , Voigt;Surendra P. Shah
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.834-839
    • /
    • 2003
  • Previous research has been conducted on an ultrasonic wave reflection method that utilizes a steel plate embedded in the concrete to measure the reflection loss of shear waves at the steel-concrete interface. The reflection loss has been shown to have a linear relationship to compressive strength at early ages. The presented investigations continue this research by examining the fundamental relationship between the reflection loss, measured with shear waves, and the hydration kinetics of Portland cement mortar, represented by dynamic elastic moduli, compressive strength and degree of hydration. Dynamic elastic moduli are measured by fundamental resonant frequency and degree of hydration is determined by thermogravimetric analysis. The water/cement ratio was varied for the tested mixture compositions. The results presented herein show that compressive strength, dynamic shear modulus and degree of hydration have a linear relationship to the reflection loss for the tested mortars at early ages.

  • PDF

The study on annual evaluation of CO2 and general economic for precast concrete without steam curing (증기양생이 불필요한 프리캐스트 콘크리트의 연간 CO2 저감량 및 경제성 평가)

  • Sung, Myung Jin;Min, Tae-Beom;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.42-43
    • /
    • 2013
  • Nowadays, Precast Concrete is adopted on most of construction, because of shortening construction period and good quality. In precast concrete, steam curing is necessary for getting proper strength, but it causes much CO2 and economc. Therefore, on this study, by using type III cement and hardening accelerator, early compressive strength was shown 13MPa for 6hr. From the result, removal form could be shorten. Furthermore, annual CO2 was reduced as much as 24% and also annual cost was decreased as much as 12%.

  • PDF

Effect of Hardening Accelerators on the Adiabatic Temperature property Properties of Precast Concrete and FEM analysis for Evaluating the Crack Performance (경화촉진제를 사용한 프리캐스트 콘크리트의 단열온도특성 및 FEM해석에 의한 균열성능 평가에 관한 연구)

  • Min, Tae-Beom;Cho, In-Sung;Mun, Young-Bum;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, initial crack index was evaluated by FEM analysis to find the crack propagation from hydration heat in precast concrete. As results, as the usage of hardening accelerator increased, initial compressive strength increased and setting time was shortened. Additionally, as amounts of hardening accelerators increased, the central temperature of concrete increased and the time to reach the highest temperature was shortened. It was demonstrated that the hardening accelerators accelerated the hydration reaction of cement, and caused the increase of hydration heat within the short period of time. Furthermore, the crack index for evaluating the heat level was performed by FEM. As results, there was no problem about the cracks, despite of the growth of initial high hydration heat. This is because of the increased tensile strength that is large enough to sustain the thermally induced-stress.

A Study on the Application of Paper Fly Ash as Stabilization/Hardening Agent (지반개량재로서 제지회의 활용에 관한 연구)

  • Lee, Yong-An;Lee, Hong-Ju;Kim, You-Seong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.23-33
    • /
    • 2002
  • Examined a practical use possibility of paper fly ash that is industrial by-product as a stabilization/hardening agent. Performed unconfined compression test, scanning electron microscopy and pH analysis etc. for 100% paper fly ash-soil mixtures and each paper fly ash-soil mixtures that add cement as the second addition and sulfate component of small quantity for strength promotion and so on. In all cases, strength of admixtures increased according as curing time and mixing ratio increases but almost strength is revealed at mixing early and expressed maximum strength increase efficiency at mixing ratio 9% with raw soil. Compare with the case that use paper fly ash only, in case of cement amount 10~30% was included in paper fly ash, strength of admixtures increases two times and 40% was included, that increases from five to eight times.

  • PDF

Effects of Shrinkage Reducing Agent (SRA) Type and Content on Mechanical Properties of Strain Hardening Cement Composite (SHCC) (수축저감제의 종류 및 혼입률에 따른 변형경화형 시멘트복합체의 역학적 특성)

  • Han, Seung-Ju;Jang, Seok-Joon;Khil, Bae-Su;Choi, Mu-Jin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.41-48
    • /
    • 2016
  • This research investigates the effects of shrinkage reducing agent (SRA) on the mechanical behavior of strain-hardening cement composite (SHCC). SHCC material with specified compressive strength of 50 MPa was mixed and tested in this study. All SHCC mixes reinforced with volume fraction of 2.2% polyvinyl alcohol (PVA) fiber and test variables are type and dosage of shrinkage reducing agents. The shrinkage reducing materials used in this study are phase change material as the thermal stress reducing materials that have the ability to absorb or release the heat. The effect of SRA was examined based on the change in length caused by shrinkage and hardened mechanical properties, specially compressive, tensile and flexural behaviors, of SHCC material. It was noted that SRA reduces change in length caused by shrinkage at early age. SRA can also improve the tensile and flexural strengths and toughness of SHCC material used in this study.

The CREAM Experiment in the International Space Station

  • Lee, Jik;Jeon, Jina;Lee, Hyun Su;Lee, Hye Young;Lim, Heuijin;Park, Il Hung;Roh, Youn;Kim, Hongjoo;Park, Hwanbae;Lee, Moo Hyun;Seo, Eun-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.206.1-206.1
    • /
    • 2012
  • The NASA Antarctica balloon experiment CREAM has successfully collected the data of energetic cosmic rays during six flights in past years. It recently observed the unexpected discrete hardening in energy spectra of comic rays. However high-statistics data of energetic cosmic rays are required for the further investigation of the unexpected hardening in comic-ray energy spectra. The International Space Station (ISS) is an ideal platform for the CREAM experiment to investigate the unexpected hardening and explore the fundamental issues like the acceleration mechanism and the origin of energetic cosmic rays because of the high duty cycle of the experiment in the ISS platform. We will present the design of the ISS-CREAM experiment, and the development and fabrication status of the detector components including the 4-layer silicon charge detector which will measure the charge constitution of cosmic rays with unprecedented accuracy.

  • PDF

Feasibility study on developing productivity and quality improved three dimensional printing process

  • Lee, Won-Hee;Kim, Dong-Soo;Lee, Taik-Min;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2160-2163
    • /
    • 2005
  • Solid freeform fabrication (SFF) technology plays a major role in industry and represents a reasonable percentage of industrial rapid prototyping/tooling/manufacturing (RP/RT/RM) development applications. However, SFF technology still has long way to progress to achieve satisfactory process speed, surface finish and overall quality improvement of its application. Today, three dimensional printing (3DP) technique that is one of SFF technology is receiving many interests, and is applied by various fields. It can fabricate three dimensional objects of solid freeform with high speed and low cost using ink jet printing technology. However, need long curing time after manufacture completion. And it must do post-processing process necessarily to heighten strength of objects because strength of fabricated objects is very weak. Therefore, in this study, we proposed an improved 3DP process that can solve problems of conventional 3DP process. The general 3DP process is method to spout binder simply through printer head on powder, but proposed process is method to cure jetted UV resin by UV lamp after jet UV resin using printhead on powder. The hardening of resin is achieved strongly at early time by UV lamp in proposed method. So, the proposed process can fabricate three dimensional objects with high speed without any post-processing.

  • PDF

A experimented study on Rapid-Setting Flowable Material (급결성 유동화처리토의 특성에 관한 실험적 연구)

  • Lee, Sang-Il;Cho, Dae-Ho;Han, Sang-Jae;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1295-1302
    • /
    • 2006
  • Controlled low-strength material(CLSM) which is easily excavated and also known as flowable material, is commonly used as a backfill in utility trenches and other applications. In this study, a rapid-setting flowable material a kind of CLSM made with a field soil were evaluated by an experimental study. The properties ordinarily desired from the mix are: (a) flow under gravity; (b) hardening for early workability(after 4 hours)and cover; and (c) ultimate strength low enough to allow ready excavation. Fluidity of fresh material is evaluated using a simple spread test. Hardening is measured by a mortar penetrometer, and these values are correlated with unconfined compressive strength. It is desirable to keep the ultimate strength to less than $5.6kg/cm^2$ somewhat less target strength is selected for the 28-day value.

  • PDF

Compressive Strength Characteristics of 3D Printing Concrete in Low Temperature Environment by Using Early Strength Improvement Type Additive (조강형 첨가제 사용에 따른 저온환경에서의 3D 프린팅 콘크리트의 압축강도 특성)

  • Yoo, Byung-Hyun;Lee, Dong-gyu;Park, Jong-Pil;Hwang, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.386-392
    • /
    • 2020
  • The self-weight of the 3D printing concrete increases with increasing printing height. Therefore, the lower layer must be hardened within a suitable time to secure continuous printing performance. In particular, the hardening speed of concrete is slow in the winter season when the temperature was low. Hence, the early strength of 3D printing concrete requires improvement. In domestic and international literature, cases of increasing the early strength of concrete using inorganic chemical additives, such as amine-based, nitrate-based, sodium-based, and calcium-based, have been reported. In this study, early strength improvement-type additive samples (amine-based, nitrate-based, sodium-based) were prepared, and their performance was evaluated. When using a nitrate-based additive, the early strength was increased significantly in a 10 ℃ environment. In addition, it was possible to secure a higher early strength than the existing 3D printing concrete mixed at 20 ℃.