• 제목/요약/키워드: early detect algorithm

검색결과 93건 처리시간 0.024초

Complexity-Reduced Algorithms for LDPC Decoder for DVB-S2 Systems

  • Choi, Eun-A;Jung, Ji-Won;Kim, Nae-Soo;Oh, Deock-Gil
    • ETRI Journal
    • /
    • 제27권5호
    • /
    • pp.639-642
    • /
    • 2005
  • This paper proposes two kinds of complexity-reduced algorithms for a low density parity check (LDPC) decoder. First, sequential decoding using a partial group is proposed. It has the same hardware complexity and requires a fewer number of iterations with little performance loss. The amount of performance loss can be determined by the designer, based on a tradeoff with the desired reduction in complexity. Second, an early detection method for reducing the computational complexity is proposed. Using a confidence criterion, some bit nodes and check node edges are detected early on during decoding. Once the edges are detected, no further iteration is required; thus early detection reduces the computational complexity.

  • PDF

영상 처리 기법을 이용한 터널 내 화재의 고속 탐지 기법의 개발 (Development of High-speed Tunnel Fire Detection Algorithm Using the Global and Local Features)

  • 이병무;한동일
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.305-306
    • /
    • 2006
  • To avoid the large scale of damage when fire occurs in the tunnel, it is necessary to have a system to minimize the damage, and early discovery of the problem. In this paper, we have proposed algorithm using the image processing, which is the high-speed detection for the occurrence of fire or smoke in the tunnel. The fire detection is different to the forest fire detection as there are elements such as car and tunnel lightings and other variety of elements different from the forest environment. Therefore, an indigenous algorithm should be developed.The two algorithms proposed in this paper, are able to complement with each other and also they can detect the exact position, at the earlier stay of detection. In addition, by comparing properties of each algorithm throughout this experiment, we have proved the propriety of algorithm.

  • PDF

Fault Detection in the Two-for-One Twister

  • Park, Ho-Cheol;Koo, Doe-Gyoon;Lee, Jie-Tae;Cho, Hyun-Ju;Han, Young-A;Sohn, Sung-Ok;Ji, Byung-Chul
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.763-768
    • /
    • 2006
  • The two-for-one(TFO) twister is precision machinery that twists fibers rapidly under constant tension. Since the quality of the twisted yarn is directly deteriorated by faults of the twister, such as the distortion of the spinning axis, bearing abrasion, and tension irregularity, it is important to detect faults of the TFO twister at an early stage. In this research, a new algorithm is proposed to detect faults of the TFO twister and their causes, by measuring the vibrations of the TFO twister and obtaining frequency components with a FFT algorithm. The TFO twister with faults showed increased vibrations and each fault generated vibrations at different frequencies. By analyzing changes of characteristics of vibrations, we can determine faulty twisters. The proposed fault detection algorithm can be implemented cheaply with a signal processor chip. It can be used to find when to repair a faulty TFO twister without much loss of yam on-line.

오신호 입력에 따른 펌프의 고장징후 조기감지 성능분석 (Performance Analysis on Early Detection of Fault Symptom of a Pump with Abnormal Signals)

  • 정재영;이병오;김형균;김대웅
    • 동력기계공학회지
    • /
    • 제20권2호
    • /
    • pp.66-72
    • /
    • 2016
  • As a method to improve the equipment reliability, early warning researches that can be detected fault symptom of an equipment at an early stage are being performed out among developed countries. In this paper, when abnormal signal is input to actual normal signal of a pump, early detection studies on pump's fault symptom were carried out with auto-associative kernel regression as an advanced pattern recognition algorithm. From analysis, correlations among power of motor driving pump, discharge flow of pump, power output of pump, and discharge pressure of pump are exited. When the abnormal signal is input to one of those normal signals, the other expected values are changed due to the influence of the abnormal signal. Therefore, the fault symptom of pump through the early-warning index is able to detect at an early stage.

Development of Effective Analytical Signal Models for Functional Microwave Imaging

  • Baang, Sung-Keun;Kim, Jong-Dae;Lee, Yong-Up;Park, Chan-Young
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권4호
    • /
    • pp.471-476
    • /
    • 2007
  • Various active microwave imaging techniques have been developed for cancer detection for past several decades. Both the microwave tomography and the UWB radar techniques, constituting functional microwave imaging systems, use the electrical property contrast between normal tissues and malignancies to detect the latter in an early development stage. Even though promising simulation results have been reported, the understanding of the functional microwave imaging diagnostics has been relied heavily on the complicated numerical results. We present a computationally efficient and physically instructive analytical electromagnetic wave channel models developed for functional microwave imaging system in order to detect especially the breast tumors as early as possible. The channel model covers the propagation factors that have been examined in the previous 2-D models, such as the radial spreading, path loss, partial reflection and transmission of the backscattered electromagnetic waves from the tumor cell. The effects of the system noise and the noise from the inhomogeneity of the tissue to the reconstruction algorithm are modeled as well. The characteristics of the reconstructed images of the tumor using the proposed model are compared with those from the confocal microwave imaging.

잎사귀 영상처리기반 질병 감지 알고리즘 (Disease Detection Algorithm Based on Image Processing of Crops Leaf)

  • 박정현;이성근;고진광
    • 한국빅데이터학회지
    • /
    • 제1권1호
    • /
    • pp.19-22
    • /
    • 2016
  • 최근 IT 기술을 활용하여 농작물의 병충해 조기 진단에 관한 연구가 활발히 진행되고 있다. 본 논문은 카메라 센서를 통해 받아온 작물의 잎사귀 이미지를 분석하여 병충해를 조기에 감지할 수 있는 이미지 프로세싱 기법에 대해 논한다. 본 논문은 개선된 K 평균 클러스터링 방법을 활용하여 잎사귀 질병 감염 여부를 진단하는 알고리즘을 제안한다. 잎사귀 감염 분류 실험을 통해, 제안한 알고리즘이 정성적인 평가에서 더 좋은 성능을 나타낸 것으로 분석되었다.

  • PDF

동맥맥파의 특징점 검출 알고리즘 개선에 관한 연구 (Improvement of a characteristic point detection algorithm of arterial pulse)

  • 전영주;이전;김종열;이낙범;임재중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1916-1917
    • /
    • 2007
  • Aortic AIx(augmentation index) has been used to measure aortic stiffness and evaluate ventricular load quantitatively. Algorithm for the detection of augmentation point gradually increases the differential order to detect inflection point rather than detects the distinctive point that appears after a specific time. Developed algorithm for AIx is proved to provide more accurate results than the ones developed by previous studies with the deviation from $-11.5{\pm}14.34$ points to $-3.75{\pm}1.26$ points. Results could provide the basis for the measurement of aortic stiffness using easily-measurable radial artery pulse waves, and could be extended to develop a system for early diagnosis of various vascular diseases.

  • PDF

다중가스센서를 이용한 화재의 조기검출에 대한 연구 (A Study on the Early Fire Detection by Using Multi-Gas Sensor)

  • 조시형;장향원;전진욱;최석임;김선규;강종위;최삼진;박찬원
    • 센서학회지
    • /
    • 제23권5호
    • /
    • pp.342-348
    • /
    • 2014
  • This paper introduced a novel multi-gas sensor detector with simple signal processing algorithm. This device was evaluated by investigating the characteristics of combustible materials using fire-generated smell and smoke. Plural sensors including TGS821, TGS2442, and TGS260X were equipped to detect carbon monoxide, hydrogen gas, and gaseous air contaminants which exist in cigarette smoke, respectively. Signal processing algorithm based on the difference of response times in fire-generated gases was implemented with early and accurately fire detection from multiple gas sensing signals. All fire experiments were performed in a virtual fire chamber. The cigarette, cotton fiber, hair, polyester fiber, nylon fiber, paper, and bread were used as a combustible material. This analyzing software and sensor controlling algorithm were embedded into 8-bit micro-controller. Also the detected multiple gas sensor signals were simultaneously transferred to the personnel computer. The results showed that the air pollution detecting sensor could be used as an efficient sensor for a fire detector which showed high sensitivity in volatile organic compounds. The proposed detecting algorithm may give more information to us compared to the conventional method for determining a threshold value. A fire detecting device with a multi-sensor is likely to be a practical and commercial technology, which can be used for domestic and office environment as well as has a comparatively low cost and high efficiency compared to the conventional device.

Mura 검출을 위한 Model Fitting 및 Least Square Estimator의 비교 (Comparison of Model Fitting & Least Square Estimator for Detecting Mura)

  • 오창환;주효남;류근호
    • 제어로봇시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.415-419
    • /
    • 2008
  • Detecting and correcting defects on LCD glasses early in the manufacturing process becomes important for panel makers to reduce the manufacturing costs and to improve productivity. Many attempts have been made and were successfully applied to detect and identify simple defects such as scratches, dents, and foreign objects on glasses. However, it is still difficult to robustly detect low-contrast defect region, called Mura or blemish area on glasses. Typically, these defect areas are roughly defined as relatively large, several millimeters of diameter, and relatively dark and/or bright region of low Signal-to-Noise Ratio (SNR) against background of low-frequency signal. The aim of this article is to present a robust algorithm to segment these blemish defects. Early 90's, a highly robust estimator, known as the Model-Fitting (MF) estimator was developed by X. Zhuang et. al. and have been successfully used in many computer vision application. Compared to the conventional Least-Square (LS) estimator the MF estimator can successfully estimate model parameters from a dataset of contaminated Gaussian mixture. Such a noise model is defined as a regular white Gaussian noise model with probability $1-\varepsilon$ plus an outlier process with probability $varepsilon$. In the sense of robust estimation, the blemish defect in images can be considered as being a group of outliers in the process of estimating image background model parameters. The algorithm developed in this paper uses a modified MF estimator to robustly estimate the background model and as a by-product to segment the blemish defects, the outliers.

음향방출 기반 배관 조기 결함 검출 및 진단 방법 (Acoustic Emission based early fault detection and diagnosis method for pipeline)

  • 김재영;정인규;김종면
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제8권3호
    • /
    • pp.571-578
    • /
    • 2018
  • 노후된 배관은 예기치 못한 누수나 균열을 발생시킨다. 이를 방치하거나 늦게 대응하면 지속적인 가스자원, 수자원 등의 막대한 손실을 발생시킨다. 본 논문에서는 배관의 결함을 검출하기 위해 음향방출 신호를 사용하는 배관 조기 결함 검출 방법과 진단 알고리즘을 제안한다. 배관의 결함으로 인해 변형이 생길 경우 배관의 고유진동수가 변화하므로 이를 관찰함으로써 배관의 이상 유무를 판단할 수 있다. 배관 조기결함 검출 방법은 정상상태의 스펙트럼과 취득된 신호의 스펙트럼을 주파수 성분의 크기에 대해 비교함으로써 배관의 결함 유무를 판단한다. 배관 조기 결함 진단 알고리즘은 정상상태와 결함상태를 기계학습 알고리즘인 서포트 벡터 머신(SVM)으로 학습하고 실제 취득된 배관 음향방출 신호를 입력하여 배관 상태를 진단한다. 실험에서는 제작된 배관 테스트베드를 사용하여 정상상태, 5mm 균열 상태, 10mm 균열 및 파공 상태를 가공하여 제안 방법을 테스트하였다. 실험 결과에서는 제안한 검출 방법 및 진단 알고리즘의 배관 조기 결함 검출 성능의 우수성을 검증하였다.