• 제목/요약/키워드: e-mail classification

검색결과 62건 처리시간 0.029초

전자메일 자동관리 시스템을 위한 전자메일 분류기의 개발 (Development of e-Mail Classifiers for e-Mail Response Management Systems)

  • 김국표;권영식
    • 한국IT서비스학회지
    • /
    • 제2권2호
    • /
    • pp.87-95
    • /
    • 2003
  • With the increasing proliferation of World Wide Web, electronic mail systems have become very widely used communication tools. Researches on e-mail classification have been very important in that e-mail classification system is a major engine for e-mail response management systems which mine unstructured e-mail messages and automatically categorize them. in this research we develop e-mail classifiers for e-mail Response Management Systems (ERMS) using naive bayesian learning and centroid-based classification. We analyze which method performs better under which conditions, comparing classification accuracies which may depend on the structure, the size of training data set and number of classes, using the different data set of an on-line shopping mall and a credit card company. The developed e-mail classifiers have been successfully implemented in practice. The experimental results show that naive bayesian learning performs better, while centroid-based classification is more robust in terms of classification accuracy.

효과적인 이메일 분류를 위한 빈발 항목집합 기반 최적 이메일 폴더 추천 기법 (A proper folder recommendation technique using frequent itemsets for efficient e-mail classification)

  • 문종필;이원석;장중혁
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.33-46
    • /
    • 2011
  • 이메일이 중요한 정보 전달과 의사소통의 수단으로 널리 활용된 이래 사람들은 이메일을 내용에 따라 적절하게 분류하는 작업에 많은 노력을 기울려 왔다. 이메일은 문서의 길이나 문체가 다양하며 사용되는 단어들이 비정규적이다. 또한 이메일 분류 기준은 일반적으로 해당 이메일 사용자의 주관에 따라 정의된다. 따라서 기존의 일반적인 문서분류 기법으로는 이메일을 효율적으로 분류하는데 어려움이 있다. 상업용 이메일 프로그램에서 제공되는 분류 기능은 메일 클라이언트에서 지원하는 텍스트 필터링을 이용한다. 한편 이메일의 자동 분류에 관한 연구는 확률 기반의 나이브 베이지안 기법을 응용하여 정확도를 높일 수 있는 연구가 주로 진행되어 왔으며, 대부분 영문 이메일에 대한 연구이다. 본 논문에서는 빈발 패턴 마이닝 기법을 적용하여 한글 이메일에 대한 개인 맞춤형 폴더 추천기법을 제시한다. 이메일의 맞춤형 폴더 추천 기법은 이메일에 대한 전처리 과정과 빈발 항목집합을 이용한 메일 폴더의 프로파일 생성과정으로 구성된다. 생성된 프로파일은 분류 대상이 되는 각 메일이 개인별 맞춤형 기준에 따라 가장 적합한 이메일 폴더로 효과적으로 분류되는데 활용된다. 또한 제안된 기법을 적용한 이메일 분류 시스템을 구현한다.

전자메일 분류를 위한 나이브 베이지안 학습과 중심점 기반 분류의 성능 비교 (Performance Comparison of Naive Bayesian Learning and Centroid-Based Classification for e-Mail Classification)

  • 김국표;권영식
    • 산업공학
    • /
    • 제18권1호
    • /
    • pp.10-21
    • /
    • 2005
  • With the increasing proliferation of World Wide Web, electronic mail systems have become very widely used communication tools. Researches on e-mail classification have been very important in that e-mail classification system is a major engine for e-mail response management systems which mine unstructured e-mail messages and automatically categorize them. In this research we compare the performance of Naive Bayesian learning and Centroid-Based Classification using the different data set of an on-line shopping mall and a credit card company. We analyze which method performs better under which conditions. We compared classification accuracy of them which depends on structure and size of train set and increasing numbers of class. The experimental results indicate that Naive Bayesian learning performs better, while Centroid-Based Classification is more robust in terms of classification accuracy.

E-mail Classification and Category Re-organization using Dynamic Category Hierarchy and PCA

  • Park, Sun;Kim, Chul-Won;An, Dong-Un
    • Journal of information and communication convergence engineering
    • /
    • 제7권3호
    • /
    • pp.351-355
    • /
    • 2009
  • The amount of incoming e-mails is increasing rapidly due to the wide usage of Internet. We often group e-mails into categories for maintaining e-mail efficiently. However reading the email messages and classifying them is still tedious task. Moreover, the number of e-mails and manual classifying is increasing everyday. So, automatic e-mail classification is important techniques. In this paper, we propose a multi-way e-mail classification method that uses PCA for automatic category generation and dynamic category hierarchy for re-organizing e-mail categories. It classifies a huge amount of receiving e-mail messages automatically, efficiently, and accurately.

자동 카테고리 생성과 동적 분류 체계를 사용한 이메일 분류 (Classification of e-mail Using Dynamic Category Hierarchy and Automatic category generation)

  • 안찬민;박상호;이주홍;최범기;박선
    • 지능정보연구
    • /
    • 제10권2호
    • /
    • pp.79-89
    • /
    • 2004
  • 이메일 사용이 보편화됨에 따라 점차 수신되는 메일의 량이 증가하고 있다. 이러한 메일 량의 증가는 사용자로 하여금 이메일을 좀더 효율적으로 분류할 수 있는 방법을 필요하게 한다. 그러나 현재의 이메일 분류는 규칙기반, 베이시안, SVM등을 이용하여 스팸메일을 필터링 하는 이원분류가 주로 연구되고 있다. 이외에도 다원분류에 대한 연구로는 클러스터링을 이용한 방법이 있으나, 이는 단순히 유사도에 의해 메일을 그룹화 하는 수준이다. 본 논문에서는 벡터모델의 유사도를 기반으로 한 자동 카테고리 생성 방법과 동적분류체계 방법을 결합하여 새로운 이메일 자동 분류 방법을 제안했다. 본 논문에서 제안한 방법은 이메일을 자동으로 다원분류하며 대량의 메일도 효율적으로 관리할 수 있다. 또한 메일을 동적으로 재분류 할 수 있게 함으로써 정확율을 높였다.

  • PDF

이메일 추천 시스템의 분류 향상을 위한 3단계 전처리 알고리즘 (A Three-Step Preprocessing Algorithm for Enhanced Classification of E-Mail Recommendation System)

  • 조동섭;정옥란
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권4호
    • /
    • pp.251-258
    • /
    • 2005
  • Automatic document classification may differ significantly according to the characteristics of documents that are subject to classification, as well as classifier's performance. This research identifies e-mail document's characteristics to apply a three-step preprocessing algorithm that can minimize e-mail document's atypical characteristics. In the first 5go, uncertain based sampling algorithm that used Mean Absolute Deviation(MAD), is used to address the question of selection learning document for the rule generation at the time of classification. In the subsequent stage, Weighted vlaue assigning method by attribute is applied to increase the discriminating capability of the terms that appear on the title on the e-mail document characteristic level. in the third and last stage, accuracy level during classification by each category is increased by using Naive Bayesian Presumptive Algorithm's Dynamic Threshold. And, we implemented an E-Mail Recommendtion System using a three-step preprocessing algorithm the enable users for direct and optimal classification with the recommendation of the applicable category when a mail arrives.

Improved Spam Filter via Handling of Text Embedded Image E-mail

  • Youn, Seongwook;Cho, Hyun-Chong
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.401-407
    • /
    • 2015
  • The increase of image spam, a kind of spam in which the text message is embedded into attached image to defeat spam filtering technique, is a major problem of the current e-mail system. For nearly a decade, content based filtering using text classification or machine learning has been a major trend of anti-spam filtering system. Recently, spammers try to defeat anti-spam filter by many techniques. Text embedding into attached image is one of them. We proposed an ontology spam filters. However, the proposed system handles only text e-mail and the percentage of attached images is increasing sharply. The contribution of the paper is that we add image e-mail handling capability into the anti-spam filtering system keeping the advantages of the previous text based spam e-mail filtering system. Also, the proposed system gives a low false negative value, which means that user's valuable e-mail is rarely regarded as a spam e-mail.

주성분 분석과 동적 분류체계를 사용한 자동 이메일 분류 (Automatic e-mail classification using Dynamic Category Hierarchy and Principal Component Analysis)

  • 박선;김철원;이양원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.576-579
    • /
    • 2009
  • 인터넷 사용의 보편화로 이메일의 양이 급속히 증가하고 있다. 따라서 수신 메일을 효율적이면서 정확하게 분류할 필요성이 점차 증가하고 있다. 현재의 이메일 분류는 베이지안, 규칙 기반 등을 이용하여 스팸 메일을 필터링하기 위한 이원 분류가 주를 이루고 있다. 클러스터링을 이용한 다원 분류 방법은 분류의 정확도가 떨어지는 단점이 있다. 본 논문에서는 주성분 분석(PCA, Principal Component Analysis)을 기반으로 한 자동 카테고리 생성 방법과 동적 분류 체계 방법을 결합한 새로운 자동 이메일 분류 방법을 제안한다. 이 방법은 수신되는 이메일을 자동으로 분류하여 대량의 메일을 효율적으로 관리할 수 있으며, 메일을 동적으로 재분류 하여 분류 정확률을 높일 수 있다.

  • PDF

전자메일 기반의 고객관계관리(CRM) 시스템 개발에 관한 연구 (A Study on the Development of Electronic Mail-based Customer Relationship Management System)

  • 김승욱;양광민
    • Journal of Information Technology Applications and Management
    • /
    • 제10권4호
    • /
    • pp.51-63
    • /
    • 2003
  • This study designs and implements a new approach to the classification of e-mail requests from customer based on machine learning techniques. The work on building an electronic mall classifier can be cast into the framework of text classification, since an e-mail is a viewed as a document, and judgement of interest is viewed as a class level given to the e-mail document. It is also implemented an e-mall based automated response system that integrate with Call Center in a practical use.

  • PDF

PCA와 동적 분류체계를 사용한 자동 이메일 계층 분류 (Automatic e-mail Hierarchy Classification using Dynamic Category Hierarchy and Principal Component Analysis)

  • 박선
    • 한국항행학회논문지
    • /
    • 제13권3호
    • /
    • pp.419-425
    • /
    • 2009
  • 인터넷 사용의 보편화로 인해 이메일의 양이 급속히 증가하고 있다. 이에 따라서 수신된 메일을 효율적이고 정확하게 분류할 필요성이 점차 증가하고 있다. 현재의 이메일 분류 기술들은 베이지안, 규칙 기반 등을 이용하여 스팸 메일을 필터링하기 위한 이원 분류가 주를 이루고 있다. 이메일의 다원분류 방법중 군집(clustering)을 이용한 분류 방법은 분류의 정확도가 떨어지고 분류 레이블이 없는 단점이 있으며, 분류(classification)를 이용한 방법은 미리 분류 레이블을 사용자가 지정해야 하며 학습시켜야 하는 단점을 갖는다. 본 논문에서는 PCA (Principal Component Analysis)를 기반으로 한 자동 카테고리 생성 방법과 동적 분류 체계 방법을 결합한 새로운 자동 이메일 계층 분류 방법을 제안한다. 이 방법은 수신되는 이메일을 자동으로 분류하여 대량의 메일을 효율적으로 관리할 수 있으며, 메일을 동적으로 재분류 하여 분류 정확률을 높일 수 있다.

  • PDF