• Title/Summary/Keyword: e-beam

Search Result 1,955, Processing Time 0.031 seconds

Fabrication of Master for a Spiral Pattern in the Order of 50nm (50nm급 불연속 나선형 패턴의 마스터 제작)

  • Oh, Seung-Hun;Choi, Doo-Sun;Je, Tae-Jin;Jeong, Myung-Yung;Yoo, Yeong-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.134-139
    • /
    • 2008
  • A spirally arrayed nano-pattern is designed as a model pattern for the next generation optical storage media. The pattern consists off types of embossed rectangular dot, which are 50nm, 100nm, 150nm and 200nm in length and 50nm in width. The height of the dot is designed to be 50nm. The pitch of the spiral track of the pattern is 100nm. A ER(Electron resist) master for this pattern is fabricated by e-beam lithography process. The ER is first spin-coated to be 50nm thick on a Si wafer and then the model pattern is written on the coated ER layer by e-beam. After developing this pattern written wafer in the solution, a ER pattern master is fabricated. The most conventional e-beam machine can write patterns in orthogonal way, so we made our own pattern generator which can write the pattern in circular or spiral way. This program generates the patterns to be compatible with the e-beam machine from Raith(Raith 150). To fabricate 50nm pattern master precisely, a series of experiments were done including the design compensation for the pattern size, optimization of the dose, acceleration voltage, aperture size and developing. Through these experiments, we conclude that the higher accelerating voltages and smaller aperture size are better for mastering the nano pattern which is in order of 50nm. With the optimized e-beam lithography process, a spiral arrayed 50nm pattern master adopting PMMA resist was fabricated to have dimensional accuracy over 95% compared to the designed. Using this pattern master, a metal pattern stamp will be fabricated by Ni electro plating for injection molding of the patterned plastic substrate.

AN EXPERIMENTAL STUDY ON THE ALTERATIONS OF ION-BEAM-ENHANCED ADHESIONS ON A VARIETY OF CERAMIC-METAL INTERFACES (이온선 혼합법이 도재-금속 계면 변화에 미치는 영향에 관한 실험적 연구)

  • Chung Keug-Mo;Park Nam-Soo;Woo Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.2
    • /
    • pp.135-154
    • /
    • 1992
  • This study was performed to analyze bond strength, the alterations of the interfaces between metal films which are populary used and considered to contribute to the chemical reaction with porcelain, according to constant ion- beam- mixing, and the relation between interfacial chemical reactions and bond strength in metal/porcelain specimens. For this study, three seperate metals : selected-gold, indium and tin were chosen ; each to be bonded to a seperate body porcelain. Bonding occurs when the metal is deposited to the body porcelain using a vacuum evaporator. The vacuum evaporator used $10^{-5}\sim10^{-6}$ Torr vacuum states for the evaporation of various metals (Au, Sn, In). Ion-beam-mixing of the porcelain/metal interfaces caused reactions when the Ar+ was implanted into thin films using a 80 KeV accelerator. These ion-beam-mixed specimens were then compared with an unmixed control group. An analysis of bond strength and ionic changes between the the metal and porcelain was performed by electron spectroscopy of chemical analysis (ESCA) and scratch test. The finding led to the following conclusions : 1. Light microscopic views of the scratch test : The ion-beam-mixed Au/porcelain specimen showed narrower scratched streams than the unmixed specimen. However, the Sn/porcelain, In/porcelain specimens showed no differences in the two conditions. 2. Acoustic emissions in scratch tests : The ion-mixed Au/porcelain, In/porcelain specimens showed signals closer to the metal/porcelain interfaces than unmixed specimens. Conversely, the ion-mixed Sn/porcelain specimen showed more critical signals in superficial portions than unmixed specimens. 3. After ion- beam-mixing, the Au/porcelain specimen showed apparently increased bond strength, and the In/porcelain specimen showed very slightly increased bond strength. However, the Sn/porcelain specimen showed no differences between ion mixed specimen and the unmixed one. 4. ESCA analysis : The ion-beam-mixed Au/porcelain specimen showed a higher peak separated value (4.3eV) than that of the unmixed specimen(3.65eV), the ion-beam-mixed In/porcelain specimen showed a higher peak separated value (9.43eV) than that of the unmixed specimen(7.6eV) and the ion-beam-mixed Sn/porcelain specimen showed a higher peak separated value (8.79eV) than that of the unmixed specimen(8.5eV). 5. Interfacial changes were observed in the ion-mixed Au/porcelain, In/porcelain and Sn/porcelain specimens. Especially, significant interfacial changes were measured in the ion- mixed Sn/porcelain specimen. Tin dioxide(SnO2) and a combination of pure tin and tin dioxide (Sn+SnO2) were produced. 6. In the Au/porcelain specimen, the interfacial chemical reaction showed increased bond strength between gold and porcelain substrate. But, in the In/porcelain, Sn/porcelain specimens, interfacial chemical reactions did not affected the bond strength between metal and porcelain substrate. Especially, bonding strength on the ion mixed Sn/porcelain specimen showed the least amount of difference.

  • PDF

Demonstration of Adaptive Analogue Beam Forming in the E-Band

  • Dyadyuk, Val;Stokes, Leigh;Nikolic, Nasiha;Weily, Andrew R.
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.138-145
    • /
    • 2010
  • In this paper, we report the test results of a small-scale prototype that implements an analogue-beam-formed phased antenna array in the E-band. A four-channel dual-conversion receive RF module for 71~76 GHz frequency band has been developed and integrated with a linear end-fire antenna array. Measured performance is very close to the simulated results. An ad-hoc wireless communication system has also been demonstrated. Low BER was measured for an 8PSK data stream at 1.5 Gbps with the receive array beam formed in the direction of arrival of the transmitted signal. To our knowledge this is the first steerable antenna array reported to date in the E-band.

Modeling an e-Beam Addressed Liquid Crystal Projection Display

  • Yang, Deng-Ke;Zhou, Fushan;Molitor, R.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.930-932
    • /
    • 2002
  • We have carried a theoretical study on e-beam addressed liquid crystal projection display in which the liquid crystal is switched by the electric field of the charge, produced by an electron beam, on the surface of the display. We calculated the electric field produced by the surface charge, the liquid crystal director configuration and the profile of the transmitted light. We studied the factors affecting the resolution of the display. We also studied the effect of pretilt angle on the performance of the display. The e-beam addressed liquid crystal projection display potentially has the advantages of high resolution and high brightness.

  • PDF

Development of a Shear Strength Equation for Beam-Column Connections in Reinforced Concrete and Steel Composite Systems

  • Choi, Yun-Chul;Moon, Ji-Ho;Lee, Eun-Jin;Park, Keum-Sung;Lee, Kang Seok
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.185-197
    • /
    • 2017
  • In this study, we propose a new equation that evaluates the shear strength of beam-column connections in reinforced concrete and steel beam (RCS) composite materials. This equation encompasses the effect of shear keys, extended face bearing plates (E-FBP), and transverse beams on connection shear strength, as well as the contribution of cover plates. Mobilization coefficients for beam-column connections in the RCS composite system are suggested. The proposed model, validated by statistical analysis, provided the strongest correlation with test results for connections containing both E-FBP and transverse beams. Additionally, our results indicated that Architectural Institute of Japan (AIJ) and Modified AIJ (M-AIJ) equations should be used carefully to evaluate the shear strength for connections that do not have E-FBP or transverse beams.

A study on the E-beam resist characteristics of plasma polymerized styrene (플라즈마중합 스티렌 박막의 e-beam 레지스트 특성에 관한 연구)

  • 이덕출;박종관
    • Electrical & Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.425-429
    • /
    • 1994
  • In this paper, we study on the plasma polymerized styrene as a negative electron-beam resist. Plasma polymerized thin film was prepared using an interelectrode inductively coupled gas-flow type reactor. We show that polymerization parameters of thin film affect sensitivity and etching resistance of the resist. Molecular weight distribution of plasma polymerized styrene is 1.41-3.93, and deposition rates of that are 32-383[.angs./min] with discharge power. Swelling and etching resistance becomes . more improved with increasing discharge power during plasma polymerization. Etch rate by RIE is higher than that by plasma etching.

  • PDF

Analysis of Kinematic Factors between Success and Failure of Free Aerial Cartwheel on the Balance Beam (평균대 한발 몸 펴 옆 공중돌기의 성패에 따른 운동학적 요인 분석)

  • Jung, Choong Min;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.24-30
    • /
    • 2022
  • Objective: The purpose of this study was to determine the factors of successful and unsuccessful movements through the analysis of kinematics and muscle activity of the Free Aerial Cartwheel on the balance beam. Method: Subjects (Age: 22.8 ± 2.4 yrs., Height: 158.7 ± 5.0 cm, Body mass: 54.1 ± 6.4 kg, Career: 13 ± 2.4 yrs.) who were currently active as female gymnasts participated in the study. They had no history of surgical treatment within 3 months. Subject criteria included more than 10 years of professional experience in college and professional level of gymnastics and the ability to conduct the Free Aerial Cartwheel on the Balance Beam. Each subject performed 10 times of Free Aerial Cartwheel on the balance beam. One successful trial and one unsuccessful trial (failure) among 10 trials were selected for the comparison. Results: It was found that longer time required in case of unsuccessful trial when performing the Free Aerial Cartwheel on the balance beam compared with successful trial. It is expected to be the result of movement in the last landing section (i.e. phase 5). In addition, it was found that the center of gravity of the body descends at a high speed to perform the jump (i.e. phase 2) in order to obtain a sufficient jumping height when the movement is successful while the knee joint is rapidly extended to perform a jump when movement fails. In the single landing section after the jump (i.e. phase 4), if the ankle joint rapidly dorsiflexed after take-off and the hip joint rapidly flexed, so landing was not successful. Conversely, in a successful landing movement, muscle activity of the biceps femoris was greatly activated resulting no shaking in the last landing section (i.e. phase 5). Conclusion: In order to succeed in this movement, it is necessary to perform a strong jump after rapidly descending the center of gravity of the body using the force of the biceps femoris muscle. Further improvement of the skills on the balance beam requires the analysis of the game-like situation with continuous research on kinematic and kinematic analysis of various techniques, jumps, turns, etc.

Effect of Change of Reactor Coolant Injection Method on Risk at Loss of Coolant Accident due to Beam Tube Rupture (빔튜브파단 냉각재상실사고시 원자로냉각수 보충방법 변경이 리스크에 미치는 영향)

  • Lee, Yoon-Hwan;Lee, Byeonghee;Jang, Seung-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.129-138
    • /
    • 2022
  • A new method for injecting cooling water into the Korean research reactor (KRR) in the event of beam tube rupture is proposed in this paper. Moreover, the research evaluates the risk to the reactor core in terms of core damage frequency (CDF). The proposed method maintains the cooling water in the chimney at a certain level in the tank to prevent nuclear fuel damage solely by gravitational coolant feeding from the emergency water supply system (EWSS). This technique does not require sump recirculation operations described in the current procedure for resolving beam tube accidents. The reduction in the risk to the core in the event of beam tube rupture that can be achieved by the proposed change in the cooling water injection design is quantified as follows. 1) The total CDF of the KRR for the proposed design change is approximately 4.17E-06/yr, which is 8.4% lower than the CDF of the current design (4.55E-06/yr). 2) The CDF for beam tube rupture is 7.10E-08/yr, which represents an 84.1% decrease compared with that of the current design (4.49E-07/yr). In addition to this quantitative reduction in risk, the modified cooling water injection design maintains a supply of pure coolant to the EWSS tank. This means that the reactor does not require decontamination after an accident. Thermal hydraulic analysis proves that the water level in the reactor pool does not cause damage to the nuclear fuel cladding after beam tube rupture. This is because the amount of water in the chimney can be regulated by the EWSS function. The EWSS supplies emergency water to the reactor core to compensate for the evaporation of coolant in the core, thus allowing water to cover the fuel assemblies in the reactor core over a sufficient amount of time.