• Title/Summary/Keyword: e-Learning distribution

Search Result 104, Processing Time 0.028 seconds

Matter Density Distribution Reconstruction of Local Universe with Deep Learning

  • Hong, Sungwook E.;Kim, Juhan;Jeong, Donghui;Hwang, Ho Seong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.53.4-53.4
    • /
    • 2019
  • We reconstruct the underlying dark matter (DM) density distribution of the local universe within 20Mpc/h cubic box by using the galaxy position and peculiar velocity. About 1,000 subboxes in the Illustris-TNG cosmological simulation are used to train the relation between DM density distribution and galaxy properties by using UNet-like convolutional neural network (CNN). The estimated DM density distributions have a good agreement with their truth values in terms of pixel-to-pixel correlation, the probability distribution of DM density, and matter power spectrum. We apply the trained CNN architecture to the galaxy properties from the Cosmicflows-3 catalogue to reconstruct the DM density distribution of the local universe. The reconstructed DM density distribution can be used to understand the evolution and fate of our local environment.

  • PDF

Pedagogical Implications for Teaching and Learning Normal Distribution Curves with CAS Calculator in High School Mathematics (CAS 계산기를 활용한 고등학교 정규분포곡선의 교수-학습을 위한 시사점 탐구)

  • Cho, Cheong-Soo
    • Communications of Mathematical Education
    • /
    • v.24 no.1
    • /
    • pp.177-193
    • /
    • 2010
  • The purpose of this study is to explore normal distribution in probability distributions of the area of statistics in high school mathematics. To do this these contents such as approximation of normal distribution from binomial distribution, investigation of normal distribution curve and the area under its curve through the method of Monte Carlo, linear transformations of normal distribution curve, and various types of normal distribution curves are explored with CAS calculator. It will not be ablt to be attained for the objectives suggested the area of probability distribution in a paper-and-pencil classroom environment from the perspectives of tools of CAS calculator such as trivialization, experimentation, visualization, and concentration. Thus, this study is to explore various properties of normal distribution curve with CAS calculator and derive from pedagogical implications of teaching and learning normal distribution curve.

On Intensive E-learning TOEIC Course (E-학습 중심의 TOEIC 집중교육에 대하여)

  • Sung, Taesoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.217-223
    • /
    • 2013
  • The purpose of this paper is to compare and analyze TOEIC scores of two kinds of courses opened at a university and the distribution of TOEIC scores of two groups. In addition, this paper will examine the ability of participants and the used instructional materials and equipment. The university has two kinds of TOEIC courses; one is a four-week intensive course opened in summer and winter vacations, where students participate in the classes from 9:00 a.m. to 4:00 p.m. The other is a regular TOEIC course, offering one-hour class every day from Monday to Friday during the university semester (15 weeks). This paper points out how important, the EFL/ESL teacher education, teaching materials, teaching methods and e-learning in operating more effective classes. The intensive TOEIC course and the regular TOEIC course include 120 hours and 75 hours a semester, respectively. Unfortunately, both courses have such a limited amount of time that students cannot achieve their fluent and perfect command of English. For Korean student to master English in a limited amount of both time and resources, the development of effective and qualitative EFL/ESL Intensive courses is essential.

Optimized Normalization for Unsupervised Learning-based Image Denoising (비지도 학습 기반 영상 노이즈 제거 기술을 위한 정규화 기법의 최적화)

  • Lee, Kanggeun;Jeong, Won-Ki
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.5
    • /
    • pp.45-54
    • /
    • 2021
  • Recently, deep learning-based denoising approaches have been actively studied. In particular, with the advances of blind denoising techniques, it become possible to train a deep learning-based denoising model only with noisy images in an image domain where it is impossible to obtain a clean image. We no longer require pairs of a clean image and a noisy image to obtain a restored clean image from the observation. However, it is difficult to recover the target using a deep learning-based denoising model trained by only noisy images if the distribution of the noisy image is far from the distribution of the clean image. To address this limitation, unpaired image denoising approaches have recently been studied that can learn the denoising model from unpaired data of the noisy image and the clean image. ISCL showed comparable performance close to that of supervised learning-based models based on pairs of clean and noisy images. In this study, we propose suitable normalization techniques for each purpose of architectures (e.g., generator, discriminator, and extractor) of ISCL. We demonstrate that the proposed method outperforms state-of-the-art unpaired image denoising approaches including ISCL.

Real-time RL-based 5G Network Slicing Design and Traffic Model Distribution: Implementation for V2X and eMBB Services

  • WeiJian Zhou;Azharul Islam;KyungHi Chang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2573-2589
    • /
    • 2023
  • As 5G mobile systems carry multiple services and applications, numerous user, and application types with varying quality of service requirements inside a single physical network infrastructure are the primary problem in constructing 5G networks. Radio Access Network (RAN) slicing is introduced as a way to solve these challenges. This research focuses on optimizing RAN slices within a singular physical cell for vehicle-to-everything (V2X) and enhanced mobile broadband (eMBB) UEs, highlighting the importance of adept resource management and allocation for the evolving landscape of 5G services. We put forth two unique strategies: one being offline network slicing, also referred to as standard network slicing, and the other being Online reinforcement learning (RL) network slicing. Both strategies aim to maximize network efficiency by gathering network model characteristics and augmenting radio resources for eMBB and V2X UEs. When compared to traditional network slicing, RL network slicing shows greater performance in the allocation and utilization of UE resources. These steps are taken to adapt to fluctuating traffic loads using RL strategies, with the ultimate objective of bolstering the efficiency of generic 5G services.

The Relationship between Organizational Capability, Organizational Learning and Financial Performance

  • HINDASAH, Lela;NURYAKIN, Nuryakin
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.8
    • /
    • pp.625-633
    • /
    • 2020
  • This study aims to empirically investigate the influence of organizational capability and organizational learning on the financial performance of family-business type small- and medium-sized enterprises (SMEs). In addition, this study examines the moderating role of SMEs' ages and the managers' experiences in the relationship between organizational capability and organizational learning on the SMEs financial performance. This study is a basic exploratory research conducted by using an empirical survey, i.e., sampling of the businessman (the owner) of family-business type SMEs cross-functional in the area of DIY. The study uses purposive sampling. The respondents are the SME businessmen from the various business sectors in Yogyakarta, Indonesia. The number of respondents is 150. Hypothesis testing used SPSS program's moderation regression approach; validity and reliability testing used confirmatory factor analysis and Cronbach's alpha. The result of this study shows that organizational capability positively and significantly affects the financial performance. Also, organizational learning significantly affects the financial performance. The organization's age factor does not moderate the relationship between organizational capability and the financial performance, but it is significant on the organizational learning. The factor of manager's experience moderates insignificantly on the relationship between organizational capability and financial performance. However, it is significant to the organizational learning.

Wavelet-like convolutional neural network structure for time-series data classification

  • Park, Seungtae;Jeong, Haedong;Min, Hyungcheol;Lee, Hojin;Lee, Seungchul
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.175-183
    • /
    • 2018
  • Time-series data often contain one of the most valuable pieces of information in many fields including manufacturing. Because time-series data are relatively cheap to acquire, they (e.g., vibration signals) have become a crucial part of big data even in manufacturing shop floors. Recently, deep-learning models have shown state-of-art performance for analyzing big data because of their sophisticated structures and considerable computational power. Traditional models for a machinery-monitoring system have highly relied on features selected by human experts. In addition, the representational power of such models fails as the data distribution becomes complicated. On the other hand, deep-learning models automatically select highly abstracted features during the optimization process, and their representational power is better than that of traditional neural network models. However, the applicability of deep-learning models to the field of prognostics and health management (PHM) has not been well investigated yet. This study integrates the "residual fitting" mechanism inherently embedded in the wavelet transform into the convolutional neural network deep-learning structure. As a result, the architecture combines a signal smoother and classification procedures into a single model. Validation results from rotor vibration data demonstrate that our model outperforms all other off-the-shelf feature-based models.

Evaluation performance of machine learning in merging multiple satellite-based precipitation with gauge observation data

  • Nhuyen, Giang V.;Le, Xuan-hien;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.143-143
    • /
    • 2022
  • Precipitation plays an essential role in water resources management and disaster prevention. Therefore, the understanding related to spatiotemporal characteristics of rainfall is necessary. Nowadays, highly accurate precipitation is mainly obtained from gauge observation systems. However, the density of gauge stations is a sparse and uneven distribution in mountainous areas. With the proliferation of technology, satellite-based precipitation sources are becoming increasingly common and can provide rainfall information in regions with complex topography. Nevertheless, satellite-based data is that it still remains uncertain. To overcome the above limitation, this study aims to take the strengthens of machine learning to generate a new reanalysis of precipitation data by fusion of multiple satellite precipitation products (SPPs) with gauge observation data. Several machine learning algorithms (i.e., Random Forest, Support Vector Regression, and Artificial Neural Network) have been adopted. To investigate the robustness of the new reanalysis product, observed data were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the machine learning model showed higher accuracy than original satellite rainfall products, and its spatiotemporal variability was better reflected than others. Thus, reanalysis of satellite precipitation product based on machine learning can be useful source input data for hydrological simulations in ungauged river basins.

  • PDF

Open Digital Textbook for Smart Education (스마트교육을 위한 오픈 디지털교과서)

  • Koo, Young-Il;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.177-189
    • /
    • 2013
  • In Smart Education, the roles of digital textbook is very important as face-to-face media to learners. The standardization of digital textbook will promote the industrialization of digital textbook for contents providers and distributers as well as learner and instructors. In this study, the following three objectives-oriented digital textbooks are looking for ways to standardize. (1) digital textbooks should undertake the role of the media for blended learning which supports on-off classes, should be operating on common EPUB viewer without special dedicated viewer, should utilize the existing framework of the e-learning learning contents and learning management. The reason to consider the EPUB as the standard for digital textbooks is that digital textbooks don't need to specify antoher standard for the form of books, and can take advantage od industrial base with EPUB standards-rich content and distribution structure (2) digital textbooks should provide a low-cost open market service that are currently available as the standard open software (3) To provide appropriate learning feedback information to students, digital textbooks should provide a foundation which accumulates and manages all the learning activity information according to standard infrastructure for educational Big Data processing. In this study, the digital textbook in a smart education environment was referred to open digital textbook. The components of open digital textbooks service framework are (1) digital textbook terminals such as smart pad, smart TVs, smart phones, PC, etc., (2) digital textbooks platform to show and perform digital contents on digital textbook terminals, (3) learning contents repository, which exist on the cloud, maintains accredited learning, (4) App Store providing and distributing secondary learning contents and learning tools by learning contents developing companies, and (5) LMS as a learning support/management tool which on-site class teacher use for creating classroom instruction materials. In addition, locating all of the hardware and software implement a smart education service within the cloud must have take advantage of the cloud computing for efficient management and reducing expense. The open digital textbooks of smart education is consdered as providing e-book style interface of LMS to learners. In open digital textbooks, the representation of text, image, audio, video, equations, etc. is basic function. But painting, writing, problem solving, etc are beyond the capabilities of a simple e-book. The Communication of teacher-to-student, learner-to-learnert, tems-to-team is required by using the open digital textbook. To represent student demographics, portfolio information, and class information, the standard used in e-learning is desirable. To process learner tracking information about the activities of the learner for LMS(Learning Management System), open digital textbook must have the recording function and the commnincating function with LMS. DRM is a function for protecting various copyright. Currently DRMs of e-boook are controlled by the corresponding book viewer. If open digital textbook admitt DRM that is used in a variety of different DRM standards of various e-book viewer, the implementation of redundant features can be avoided. Security/privacy functions are required to protect information about the study or instruction from a third party UDL (Universal Design for Learning) is learning support function for those with disabilities have difficulty in learning courses. The open digital textbook, which is based on E-book standard EPUB 3.0, must (1) record the learning activity log information, and (2) communicate with the server to support the learning activity. While the recording function and the communication function, which is not determined on current standards, is implemented as a JavaScript and is utilized in the current EPUB 3.0 viewer, ths strategy of proposing such recording and communication functions as the next generation of e-book standard, or special standard (EPUB 3.0 for education) is needed. Future research in this study will implement open source program with the proposed open digital textbook standard and present a new educational services including Big Data analysis.

Decision Support System for Project Duration Estimation Model (프로젝트기간 예측모델을 위한 의사결정 지원시스템)

  • 조성빈
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.369-374
    • /
    • 2000
  • Despite their tilde application of some traditional project management techniques like the Program Evaluation and Review Technique, they lack of learning, one of important factors in many disciplines today due to a static view far prefect progression. This study proposes a framework for estimation by learning based on a Linear Bayesian approach. As a project progresses, we sequentially observe the durations of completed activities. By reflecting this newly available information to update the distribution of remaining activity durations and thus project duration, we can implement a decision support system that updates e.g. the expected project completion time as well as the probabilities of completing the project within talc due date and by a certain date. By Implementing such customized systems, project manager can be aware of changing project status more effectively and better revise resource allocation plans.

  • PDF