• Title/Summary/Keyword: e-Learning Systems

Search Result 647, Processing Time 0.029 seconds

Study on Construction Method of Hybrid Web-based Smart Learning Systems (하이브리드 웹 기반의 스마트 러닝 시스템 구축 방안 연구)

  • Kim, JongBae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.370-378
    • /
    • 2012
  • This paper proposes a method of constructing of hybrid web-based smart learning system to operable in a variety of mobile devices. To do this, the proposed system is developed a learning system with standardized and enhanced functions. In the proposed method, API specifications based on the standard functionality of smart learning system are created. And then, by building the API provider on a legacy system an organic linkage between the legacy system and the smart learning system is guaranteed. A standard API method is applied to data integration between the PC-based learning system and the smart learning system. The smart learning system interacts with legacy learning systems though Json/XML data forms via the https protocol. As a result, the legacy system using the proposed method dose not require major modifications and changes for a smart learning service.

Effective E-Learning Practices by Machine Learning and Artificial Intelligence

  • Arshi Naim;Sahar Mohammed Alshawaf
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.209-214
    • /
    • 2024
  • This is an extended research paper focusing on the applications of Machine Learing and Artificial Intelligence in virtual learning environment. The world is moving at a fast pace having the application of Machine Learning (ML) and Artificial Intelligence (AI) in all the major disciplines and the educational sector is also not untouched by its impact especially in an online learning environment. This paper attempts to elaborate on the benefits of ML and AI in E-Learning (EL) in general and explain how King Khalid University (KKU) EL Deanship is making the best of ML and AI in its practices. Also, researchers have focused on the future of ML and AI in any academic program. This research is descriptive in nature; results are based on qualitative analysis done through tools and techniques of EL applied in KKU as an example but the same modus operandi can be implemented by any institution in its EL platform. KKU is using Learning Management Services (LMS) for providing online learning practices and Blackboard (BB) for sharing online learning resources, therefore these tools are considered by the researchers for explaining the results of ML and AI.

A NOTE ON GENERALIZED NET MODEL OF E-LEARNING EVALUATION ASSOCIATED WITH INTUITIONISTIC FUZZY ESTIMATIONS

  • Shannon, A.;Sotirova, E.;Atanassov, K.;Krawczak, M.;Melo-Pinto, P.;Kim, T.;Jang, L.C.;Kang, Dong-Jin;Rim, S.H.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.6-9
    • /
    • 2006
  • A generalized net is used to construct a model which describes the process of evaluation of the problems solved by students. The model utilizes the theory of intuitionistic fuzzy sets. The model can be used to simulate some processes, related to estimation of students' background.

Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization (정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적)

  • JANG, Se-In;PARK, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.53-65
    • /
    • 2019
  • Object tracking is one of important steps to achieve video-based surveillance systems. Object tracking is considered as an essential task similar to object detection and recognition. In order to perform object tracking, various machine learning methods (e.g., least-squares, perceptron and support vector machine) can be applied for different designs of tracking systems. In general, generative methods (e.g., principal component analysis) were utilized due to its simplicity and effectiveness. However, the generative methods were only focused on modeling the target object. Due to this limitation, discriminative methods (e.g., binary classification) were adopted to distinguish the target object and the background. Among the machine learning methods for binary classification, total error rate minimization can be used as one of successful machine learning methods for binary classification. The total error rate minimization can achieve a global minimum due to a quadratic approximation to a step function while other methods (e.g., support vector machine) seek local minima using nonlinear functions (e.g., hinge loss function). Due to this quadratic approximation, the total error rate minimization could obtain appropriate properties in solving optimization problems for binary classification. However, this total error rate minimization was based on a batch mode setting. The batch mode setting can be limited to several applications under offline learning. Due to limited computing resources, offline learning could not handle large scale data sets. Compared to offline learning, online learning can update its solution without storing all training samples in learning process. Due to increment of large scale data sets, online learning becomes one of essential properties for various applications. Since object tracking needs to handle data samples in real time, online learning based total error rate minimization methods are necessary to efficiently address object tracking problems. Due to the need of the online learning, an online learning based total error rate minimization method was developed. However, an approximately reweighted technique was developed. Although the approximation technique is utilized, this online version of the total error rate minimization could achieve good performances in biometric applications. However, this method is assumed that the total error rate minimization can be asymptotically achieved when only the number of training samples is infinite. Although there is the assumption to achieve the total error rate minimization, the approximation issue can continuously accumulate learning errors according to increment of training samples. Due to this reason, the approximated online learning solution can then lead a wrong solution. The wrong solution can make significant errors when it is applied to surveillance systems. In this paper, we propose an exactly reweighted technique to recursively update the solution of the total error rate minimization in online learning manner. Compared to the approximately reweighted online total error rate minimization, an exactly reweighted online total error rate minimization is achieved. The proposed exact online learning method based on the total error rate minimization is then applied to object tracking problems. In our object tracking system, particle filtering is adopted. In particle filtering, our observation model is consisted of both generative and discriminative methods to leverage the advantages between generative and discriminative properties. In our experiments, our proposed object tracking system achieves promising performances on 8 public video sequences over competing object tracking systems. The paired t-test is also reported to evaluate its quality of the results. Our proposed online learning method can be extended under the deep learning architecture which can cover the shallow and deep networks. Moreover, online learning methods, that need the exact reweighting process, can use our proposed reweighting technique. In addition to object tracking, the proposed online learning method can be easily applied to object detection and recognition. Therefore, our proposed methods can contribute to online learning community and object tracking, detection and recognition communities.

A Survey on Deep Learning-based Analysis for Education Data (빅데이터와 AI를 활용한 교육용 자료의 분석에 대한 조사)

  • Lho, Young-uhg
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.240-243
    • /
    • 2021
  • Recently, there have been research results of applying Big data and AI technologies to the evaluation and individual learning for education. It is information technology innovations that collect dynamic and complex data, including student personal records, physiological data, learning logs and activities, learning outcomes and outcomes from social media, MOOCs, intelligent tutoring systems, LMSs, sensors, and mobile devices. In addition, e-learning was generated a large amount of learning data in the COVID-19 environment. It is expected that learning analysis and AI technology will be applied to extract meaningful patterns and discover knowledge from this data. On the learner's perspective, it is necessary to identify student learning and emotional behavior patterns and profiles, improve evaluation and evaluation methods, predict individual student learning outcomes or dropout, and research on adaptive systems for personalized support. This study aims to contribute to research in the field of education by researching and classifying machine learning technologies used in anomaly detection and recommendation systems for educational data.

  • PDF

A Study on the Segmentation for Adaptation of Web Contents in Smart Learning Environment (스마트 학습 환경에서 웹 콘텐츠 적응을 위한 부분화에 관한 연구)

  • Seo, Jin Ho;Kim, Myong Hee;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.325-333
    • /
    • 2016
  • The development of smart technology has brought the conversion of closed traditional e-learning contents into open flexible smart learning contents consisting of learner-centered modules, without the constraints of time and space by use of smart devices from the uniformed and passive classroom between teachers and learners. It has been demanded an open, personalized and customized teaching and learning contents of smart education and training systems according to wide supply of various smart devices. In this paper, we discuss about the status of the smart teaching and learning systems and analyze the characteristics and structure of the web contents for smart education and training systems by use of smart devices. And we propose a method how to block web contents, to extract them, and adapt personalized segments of web contents by adaptive algorithm into smart learning devices. We extract blocks from the web contents based on the smart device information and the preference information of the learners from existing web contents without the hassle of learners environment. After specifying a block priority from the extracted web contents by the adaptive segment algorithm, it can be displayed directly to the screen to fit the individual learning progress of the learners.

e-Leaming Environments for Digital Circuit Experiments

  • Murakoshi, Hideki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.58-61
    • /
    • 2003
  • This paper proposes e-Learning environments far digital circuit experiment. The e-Learning environments are implemented as a WBT system that includes the circuits monitoring system and the students management system. In the WBT client-server system, the instructor represents the server and students represent clients. The client computers are equipped with a digital circuit training board and connected to the server on the World Wide Web. The training board consists of a Programmable Logic Device (PLD) and measuring instruments. The instructor can reconfigure the PLD with various circuit designs from the server so that students can investigate signals from the training board. The instructor can monitor the progress of the students using Joint Test Action Grouo(JTAG) technology. We implement the WBT system and a courseware fo digital circuits and evaluation the environments.

  • PDF

Metaphor and Typeface Based on Children's Sensibilities for e-Learning

  • Jo, Mi-Heon;Han, Jeong-Hye
    • Journal of Information Processing Systems
    • /
    • v.2 no.3 s.4
    • /
    • pp.178-182
    • /
    • 2006
  • Children exhibit different behaviors, skills, and motivations. The main aim of this research was to investigate children's sensibility factors for icons, and to look for the best typeface for application to Web-Based Instruction (WBI) for e-Learning. Three types of icons were used to assess children's sensibilities toward metaphors: text-image, representational, and spatial mapping. Through the factor analysis, we found that children exhibited more diverse reactions to the text-image and representational types of icons than to the spatial mapping type of icons. Children commonly showedn higher sensibilities to the aesthetic-factor than to the familiarity-factor or the brevity-factor. In addition, we propose a collaborative-typeface system, which recommends the best typeface for children regarding the readability and aesthetic factor in WBI. Based on these results, we venture some suggestions on icon design and typeface selection for e-Learning.

A Case Study: Design and Develop e-Learning Content for Korean Local Government Officials in the Pandemic

  • Park, Eunhye;Park, Sehyeon;Ryu, JaeYoul
    • International Journal of Contents
    • /
    • v.18 no.2
    • /
    • pp.47-57
    • /
    • 2022
  • e-Learning content can be defined as digital content to achieve educational goals. Since it is an educational material that can be distributed in offline, online, and mobile environments, it is important to create content that meets the learner's education environment and educational goals. In particular, if the learner is a public official, the vision, philosophy, and characteristics of each local government must reflect. As non-face-to-face online education expands further due to the COVID-19 pandemic, local governments that have relied on onsite education in the past urgently require developing strong basic competency education and special task competency content that reflect regional characteristics. Such e-learning content, however, hardly exists and the ability to independently develop them is also insufficient. In this circumstance, this case study describes the process of self-production of e-learning content suitable for Busan's characteristics by the Human Resource Development (HRD) Institute of Busan City, a local government. The field of instructional design and instructional technology is always evolving and growing by blending technological innovation into instructional platform design and adapting to the changes in society. Busan HRD Institute (BHI), therefore, tried to implement blended learning by developing content that reflected the recent trend of micro-learning in e-learning through a detailed analysis. For this, an e-learning content developer with certain requirements was selected and contracted, and the process of developing content through a collaboration between the client and developer was described in this study according to the ADDIE model of Instructional Systems Development (ISD).

An Investigation of Cloud Computing and E-Learning for Educational Advancement

  • Ali, Ashraf;Alourani, Abdullah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.216-222
    • /
    • 2021
  • Advances in technology have given educators a tool to empower them to assist with developing the best possible human resources. Teachers at universities prefer to use more modern technological advances to help them educate their students. This opens up a necessity to research the capabilities of cloud-based learning services so that educational solutions can be found among the available options. Based on that, this essay looks at models and levels of deployment for the e-learning cloud architecture in the education system. A project involving educators explores whether gement Systems (LMS) can function well in a collaborative remote learning environment. The study was performed on how Blackboard was being used by a public institution and included research on cloud computing. This test examined how Blackboard Learn performs as a teaching tool and featured 60 participants. It is evident from the completed research that computers are beneficial to student education, especially in improving how schools administer lessons. Convenient tools for processing educational content are included as well as effective organizational strategies for educational processes and better ways to monitor and manage knowledge. In addition, this project's conclusions help highlight the advantages of rolling out cloud-based e-learning in higher educational institutions, which are responsible for creating the integrated educational product. The study showed that a shift to cloud computing can bring progress to educational material and substantial improvement to student academic outcomes, which is related to the increased use of better learning tools and methods.