• Title/Summary/Keyword: e-Learning Field

Search Result 266, Processing Time 0.038 seconds

Detecting Malware in Cyberphysical Systems Using Machine Learning: a Survey

  • Montes, F.;Bermejo, J.;Sanchez, L.E.;Bermejo, J.R.;Sicilia, J.A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1119-1139
    • /
    • 2021
  • Among the scientific literature, it has not been possible to find a consensus on the definition of the limits or properties that allow differentiating or grouping the cyber-physical systems (CPS) and the Internet of Things (IoT). Despite this controversy the papers reviewed agree that both have become crucial elements not only for industry but also for society in general. The impact of a malware attack affecting one of these systems may suppose a risk for the industrial processes involved and perhaps also for society in general if the system affected is a critical infrastructure. This article reviews the state of the art of the application of machine learning in the automation of malware detection in cyberphysical systems, evaluating the most representative articles in this field and summarizing the results obtained, the most common malware attacks in this type of systems, the most promising algorithms for malware detection in cyberphysical systems and the future lines of research in this field with the greatest potential for the coming years.

Prediction of Significant Wave Height in Korea Strait Using Machine Learning

  • Park, Sung Boo;Shin, Seong Yun;Jung, Kwang Hyo;Lee, Byung Gook
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.336-346
    • /
    • 2021
  • The prediction of wave conditions is crucial in the field of marine and ocean engineering. Hence, this study aims to predict the significant wave height through machine learning (ML), a soft computing method. The adopted metocean data, collected from 2012 to 2020, were obtained from the Korea Institute of Ocean Science and Technology. We adopted the feedforward neural network (FNN) and long-short term memory (LSTM) models to predict significant wave height. Input parameters for the input layer were selected by Pearson correlation coefficients. To obtain the optimized hyperparameter, we conducted a sensitivity study on the window size, node, layer, and activation function. Finally, the significant wave height was predicted using the FNN and LSTM models, by varying the three input parameters and three window sizes. Accordingly, FNN (W48) (i.e., FNN with window size 48) and LSTM (W48) (i.e., LSTM with window size 48) were superior outcomes. The most suitable model for predicting the significant wave height was FNN(W48) owing to its accuracy and calculation time. If the metocean data were further accumulated, the accuracy of the ML model would have improved, and it will be beneficial to predict added resistance by waves when conducting a sea trial test.

STUDY ON APPLICATION OF NEURO-COMPUTER TO NONLINEAR FACTORS FOR TRAVEL OF AGRICULTURAL CRAWLER VEHICLES

  • Inaba, S.;Takase, A.;Inoue, E.;Yada, K.;Hashiguchi, K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.124-131
    • /
    • 2000
  • In this study, the NEURAL NETWORK (hereinafter referred to as NN) was applied to control of the nonlinear factors for turning movement of the crawler vehicle and experiment was carried out using a small model of crawler vehicle in order to inspect an application of NN. Furthermore, CHAOS NEURAL NETWORK (hereinafter referred to as CNN) was also applied to this control so as to compare with conventional NN. CNN is especially effective for plane in many variables with local minimum which conventional NN is apt to fall into, and it is relatively useful to nonlinear factors. Experiment of turning on the slope of crawler vehicle was performed in order to estimate an adaptability of nonlinear problems by NN and CNN. The inclination angles of the road surface which the vehicles travel on, were respectively 4deg, 8deg, 12deg. These field conditions were selected by the object for changing nonlinear magnitude in turning phenomenon of vehicle. Learning of NN and CNN was carried out by referring to positioning data obtained from measurement at every 15deg in turning. After learning, the sampling data at every 15deg were interpolated based on the constructed learning system of NN and CNN. Learning and simulation programs of NN and CNN were made by C language ("Association of research for algorithm of calculating machine (1992)"). As a result, conventional NN and CNN were available for interpolation of sampling data. Moreover, when nonlinear intensity is not so large under the field condition of small slope, interpolation performance of CNN was a little not so better than NN. However, when nonlinear intensity is large under the field condition of large slope, interpolation performance of CNN was relatively better than NN.

  • PDF

Study on Big Data Utilization Plans in Mathematics Education (수학교육에서 빅데이터 활용 방안에 대한 소고)

  • Ko, Ho Kyoung;Choi, Youngwoo;Park, Seonjeong
    • Communications of Mathematical Education
    • /
    • v.28 no.4
    • /
    • pp.573-588
    • /
    • 2014
  • How will the field of education react to the big data craze that has recently seeped into every aspect of society? To search for ways to use big data in mathematics education, this study first examined the concept of big data and examples of its application, and then pursued directions for future research in two ways. First, changes in the representation and acceptance of data are required because of changes in technology and the environment. In other words, the learning content and methodology of data treatment need to be changed by describing a myriad amount of data visually or by 'analyzing and inferring' data to provide data efficiently and clearly. Additionally, the mathematics education field needs to foster changes in curricula to facilitate the improvement of students' learning capacity in the 21st century. Second, it is necessary to more actively collect data on general education and not merely on teaching or learning to identify new information, pursue positive changes in the teaching and learning of mathematics, and stimulate interest and research in the field so that it can be used to make policy decisions regarding mathematics education.

Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review

  • Nagi, Ravleen;Aravinda, Konidena;Rakesh, N;Gupta, Rajesh;Pal, Ajay;Mann, Amrit Kaur
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.81-92
    • /
    • 2020
  • Intelligent systems(i.e., artificial intelligence), particularly deep learning, are machines able to mimic the cognitive functions of humans to perform tasks of problem-solving and learning. This field deals with computational models that can think and act intelligently, like the human brain, and construct algorithms that can learn from data to make predictions. Artificial intelligence is becoming important in radiology due to its ability to detect abnormalities in radiographic images that are unnoticed by the naked human eye. These systems have reduced radiologists' workload by rapidly recording and presenting data, and thereby monitoring the treatment response with a reduced risk of cognitive bias. Intelligent systems have an important role to play and could be used by dentists as an adjunct to other imaging modalities in making appropriate diagnoses and treatment plans. In the field of maxillofacial radiology, these systems have shown promise for the interpretation of complex images, accurate localization of landmarks, characterization of bone architecture, estimation of oral cancer risk, and the assessment of metastatic lymph nodes, periapical pathologies, and maxillary sinus pathologies. This review discusses the clinical applications and scope of intelligent systems such as machine learning, artificial intelligence, and deep learning programs in maxillofacial imaging.

Wavelet-like convolutional neural network structure for time-series data classification

  • Park, Seungtae;Jeong, Haedong;Min, Hyungcheol;Lee, Hojin;Lee, Seungchul
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.175-183
    • /
    • 2018
  • Time-series data often contain one of the most valuable pieces of information in many fields including manufacturing. Because time-series data are relatively cheap to acquire, they (e.g., vibration signals) have become a crucial part of big data even in manufacturing shop floors. Recently, deep-learning models have shown state-of-art performance for analyzing big data because of their sophisticated structures and considerable computational power. Traditional models for a machinery-monitoring system have highly relied on features selected by human experts. In addition, the representational power of such models fails as the data distribution becomes complicated. On the other hand, deep-learning models automatically select highly abstracted features during the optimization process, and their representational power is better than that of traditional neural network models. However, the applicability of deep-learning models to the field of prognostics and health management (PHM) has not been well investigated yet. This study integrates the "residual fitting" mechanism inherently embedded in the wavelet transform into the convolutional neural network deep-learning structure. As a result, the architecture combines a signal smoother and classification procedures into a single model. Validation results from rotor vibration data demonstrate that our model outperforms all other off-the-shelf feature-based models.

Anomaly Detection of Machining Process based on Power Load Analysis (전력 부하 분석을 통한 절삭 공정 이상탐지)

  • Jun Hong Yook;Sungmoon Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.173-180
    • /
    • 2023
  • Smart factory companies are installing various sensors in production facilities and collecting field data. However, there are relatively few companies that actively utilize collected data, academic research using field data is actively underway. This study seeks to develop a model that detects anomalies in the process by analyzing spindle power data from a company that processes shafts used in automobile throttle valves. Since the data collected during machining processing is time series data, the model was developed through unsupervised learning by applying the Holt Winters technique and various deep learning algorithms such as RNN, LSTM, GRU, BiRNN, BiLSTM, and BiGRU. To evaluate each model, the difference between predicted and actual values was compared using MSE and RMSE. The BiLSTM model showed the optimal results based on RMSE. In order to diagnose abnormalities in the developed model, the critical point was set using statistical techniques in consultation with experts in the field and verified. By collecting and preprocessing real-world data and developing a model, this study serves as a case study of utilizing time-series data in small and medium-sized enterprises.

Estimating vegetation index for outdoor free-range pig production using YOLO

  • Sang-Hyon Oh;Hee-Mun Park;Jin-Hyun Park
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.638-651
    • /
    • 2023
  • The objective of this study was to quantitatively estimate the level of grazing area damage in outdoor free-range pig production using a Unmanned Aerial Vehicles (UAV) with an RGB image sensor. Ten corn field images were captured by a UAV over approximately two weeks, during which gestating sows were allowed to graze freely on the corn field measuring 100 × 50 m2. The images were corrected to a bird's-eye view, and then divided into 32 segments and sequentially inputted into the YOLOv4 detector to detect the corn images according to their condition. The 43 raw training images selected randomly out of 320 segmented images were flipped to create 86 images, and then these images were further augmented by rotating them in 5-degree increments to create a total of 6,192 images. The increased 6,192 images are further augmented by applying three random color transformations to each image, resulting in 24,768 datasets. The occupancy rate of corn in the field was estimated efficiently using You Only Look Once (YOLO). As of the first day of observation (day 2), it was evident that almost all the corn had disappeared by the ninth day. When grazing 20 sows in a 50 × 100 m2 cornfield (250 m2/sow), it appears that the animals should be rotated to other grazing areas to protect the cover crop after at least five days. In agricultural technology, most of the research using machine and deep learning is related to the detection of fruits and pests, and research on other application fields is needed. In addition, large-scale image data collected by experts in the field are required as training data to apply deep learning. If the data required for deep learning is insufficient, a large number of data augmentation is required.

Text Mining-Based Emerging Trend Analysis for e-Learning Contents Targeting for CEO (텍스트마이닝을 통한 최고경영자 대상 이러닝 콘텐츠 트렌드 분석)

  • Kyung-Hoon Kim;Myungsin Chae;Byungtae Lee
    • Information Systems Review
    • /
    • v.19 no.2
    • /
    • pp.1-19
    • /
    • 2017
  • Original scripts of e-learning lectures for the CEOs of corporation S were analyzed using topic analysis, which is a text mining method. Twenty-two topics were extracted based on the keywords chosen from five-year records that ranged from 2011 to 2015. Research analysis was then conducted on various issues. Promising topics were selected through evaluation and element analysis of the members of each topic. In management and economics, members demonstrated high satisfaction and interest toward topics in marketing strategy, human resource management, and communication. Philosophy, history of war, and history demonstrated high interest and satisfaction in the field of humanities, whereas mind health showed high interest and satisfaction in the field of in lifestyle. Studies were also conducted to identify topics on the proportion of content, but these studies failed to increase member satisfaction. In the field of IT, educational content responds sensitively to change of the times, but it may not increase the interest and satisfaction of members. The present study found that content production for CEOs should draw out deep implications for value innovation through technology application instead of simply ending the technical aspect of information delivery. Previous studies classified contents superficially based on the name of content program when analyzing the status of content operation. However, text mining can derive deep content and subject classification based on the contents of unstructured data script. This approach can examine current shortages and necessary fields if the service contents of the themes are displayed by year. This study was based on data obtained from influential e-learning companies in Korea. Obtaining practical results was difficult because data were not acquired from portal sites or social networking service. The content of e-learning trends of CEOs were analyzed. Data analysis was also conducted on the intellectual interests of CEOs in each field.

A Study on Design Direction of e-Portfolio Based on the Current State Analysis of Portfolio Application of Domestic Elementary, Middle, and High School (국내 초.중등학교의 포트폴리오 활용 실태 분석에 기반한 e-포트폴리오 설계 방향에 관한 연구)

  • Kim, Sang-Su;Kim, Young-Hak
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.12
    • /
    • pp.83-94
    • /
    • 2007
  • The portfolio can be used as a methodology supporting the learning of constructivism. Recently, the use of portfolios has been increased gradually in the education field, but a study on the current state analysis and design direction of portfolios leaves much to be desired. In this paper, we analyze statistical data on the portfolio application of teachers in domestic elementary, middle, and high school. We also propose a design direction of e-portfolio needed in the society of knowledge information based on this analysis. The results of research show that the following problems will be improved: understanding portfolio, analyzing the current state according to the types of portfolio application, designing a distinguished system according to the level of school, expanding education of teachers with high career, and developing a guide helper. The design of total system that combines the learning and evaluation is needed to improve a problem that spends lots of time to make portfolio, and operates temporally and formally achievement evaluation. In addition, the design of e-portfolio supporting efficiently interaction and self-directed teaming is required.