• Title/Summary/Keyword: dynamic vulcanization

Search Result 29, Processing Time 0.021 seconds

A Study on Vulcanization Reaction of Modified Rubber Blends Using Dynamic Differential Scanning Calorimetry (Dynamic DSC를 이용한 개질 고무 블랜드의 가황 반응에 관한 연구)

  • Lee, Seung-Hyun;Ahn, Won-Sool
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.326-333
    • /
    • 2003
  • Even though many studies have been reported about rubber vulcanization, it is still remained difficult to find a quantitative relationship between the final states of vulcanized rubber and initial formulation or processing conditions. Dynamic differential scanning calorimetry (DSC) method is known as a comparatively easy method to research for the rubber vulcanization in both experimental and analysis. In the present research, a study on the vulcanization reaction of NR/CB composites modified by isoprene(IR) and chloroprene(CR) rubbers is carried out using dynamic DSC method. Thermograms with several different heating rates were obtained and analyzed using the Kissinger method. Analysis showed that the vulcanization reaction was progressed through the first order reaction mechanism. In addition, the reaction temperature was severely influenced by the kinds or rubber modifiers, in this case, more influenced by CR than by IR. Those effects were clearly verified in the values of activation energy. Kinds of carbon blacks, however, could hardly influence on the reaction mechanism.

Effects of Carbon Black Content and Vulcanization Type on Cure Characteristics and Dynamic Mechanical Property of Styrene-Butadiene Rubber Compound

  • Changwoon Nah;Kim, Wan-Doo;Lee, Seag
    • Macromolecular Research
    • /
    • v.9 no.3
    • /
    • pp.157-163
    • /
    • 2001
  • The influences of carbon black loading and cure type on the cure characteristics including kinetics and dynamic mechanical properties were investigated for a styrene-butadiene rubber (SBR). The rate constants of accelerated sulfur vulcanization reaction at three different temperatures were determined using a cure rheometer, and they were compared with those from the direct measurement of sulfur concentration. The strain softening behavior under dynamic deformation, known as the Payne effect was also discussed depending on the carbon black loading and cure type.

  • PDF

Effects of Vulcanization Type end Temperature on Physical Properties of Natural Rubber Compounds (가황형태 및 온도가 천연고무 컴파운드의 물리적 특성에 미치는 영향)

  • Rhee, John-M.;Yoon, Chan-Ho;Huh, Yang-Il;Han, Seung-Cheol;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.35 no.3
    • /
    • pp.173-179
    • /
    • 2000
  • Cure characteristics. tensile properties, and dynamic properties were investigated on the carbon black-filled natural rubber compounds, in which three typical vulcanization types conventional vulcanization(Conv), semi-efficient(Semi-EV), and efficient(EV) vulcanizations were used. The effects of vulcanization temperature on both the mechanical property and aging resistance of rubber compounds were also investigated. The Conv cure system showed a slightly slower rate of vulcanization than those of Semi-EV and EV ones. On the other hand, it showed a higher value in the maximum torque of cure curve. Higher tensile moduli were observed in Conv system than those in Semi-EV and EV ones, while lower elongation at break were obtained in Conv one. The tensile strength at break were found to be about the same for three cute systems. Hardness, modulus, and tensile strength decreased with increasing the vulcanization temperature, and the degree of changes in the properties was found to be smaller for EV and Semi-EV systems than that in Conv one. The EV system was found to be superior in thermal-aging resistance to Conv one.

  • PDF

Effects of CR Contents on Rubber Vulcanization and Mechanical Properties of NR/CR Blends (NR/CR 고무블랜드에서의 CR조성비가 가황 및 물성에 미치는 영향)

  • Ahn, Won-Sool;Park, Dong-Ryul
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.152-157
    • /
    • 2011
  • Effects of CR contents in NR/CR blends on the vulcanization kinetics and miscibility were studied by dynamic DSC and TGA, as well as the mechanical properties. While the vulcanization activation energy showed a constant value of $77.5{\pm}2.5$ kcal/mol regardless of CR contents, reaction rate, however, was observed to be somewhat lowered at increased CR contents. Partial miscibility was found between NR and CR phases at lower CR content of 3 wt%, but immiscibility was observed at higher CR content of 21 wt%. Mechanical properties were also affected by this miscibility, showing linear increase of compression set but decrease of tensile strength with CR contents in the blends.

The Study on the Dependence of Cure Condition for Reinforcing Filler (보강성충전제의 가황조건 의존성에 관한 연구)

  • Lee, Seag
    • Elastomers and Composites
    • /
    • v.33 no.2
    • /
    • pp.75-82
    • /
    • 1998
  • The purpose of this experimental study was to investigate the effects of vulcanization condition on the properties of reinforced rubbers. Rubber reinforcing ability of carbon black was more efficient than other fillers, but tensile properties were not affected by vulcanization condition while vulcanization condition affected the physical properties of rubber compounds with silica and silane treated slica. It was found that silica and silane treated silica filled rubber compounds showed good dynamic properties, rebound, heat build-up, 0 and $60^{\circ}C$ tan $\delta$ compared with carbon black filled rubber compounds. Carbon black filled rubber compounds were higher than silica and silane treated silica filled rubber compounds in total crosslinking density by vulcanization condition. By analysis of crosslinking type, polysulfide crosslinking was the highest in the carbon black filled rubber compounds with decreasing the ratio of sulfur to accelerator, monosulfide crosslinking was the highest in the silane treated silica filled compounds with in-creasing the ratio of sulfur to accelerator.

  • PDF

Effect of Kenaf Fiber Loading on the Properties of Natural Fiber/Natural Rubber Composites (천연섬유/천연고무 복합재료의 특성에 미치는 Kenaf 섬유함량의 영향)

  • Cho, Yi-Seok;Cho, Dong-Hwan
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.186-194
    • /
    • 2011
  • Natural fiber/natural rubber composites were fabricated by uniformly compounding natural rubber and cellulose- based natural fiber kenaf and then by compression molding. The effect of kenaf fiber content on their vulcanization behavior, hardness, tensile properties, tear strength and static and dynamic properties was investigated. The contents of kenaf fiber in the composites were 0, 5, 10, 15, and 20 phr, compared to natural rubber and additives. The result indicated that various properties of natural rubber depended on the kenaf fiber content. With increasing kenaf fiber content, the torque for vulcanization of natural rubber was increased whereas the vulcanization time was reduced as well. The hardness, tensile modulus and tear strength of kenaf/natural rubber composites were gradually decreased with the fiber content whereas the tensile strength and elongation at break were decreased. Also, with increasing the kenaf fiber content the dynamic property of natural rubber was changed more greatly than the static property. The loss factor, which is closely related with the damping or absorption of the energy given to natural rubber, was proportionally increased with the fiber content.

A Study on Dynamic Properties for Filler Compounded NR Vulcanizates (충전제(充塡劑)를 배합(配合)한 NR가황체(加黃體)의 동적(動的) 성질(性質)에 관(關)한 연구(硏究))

  • Chun, Kyung-Soo;Choi, Jae-Woon
    • Elastomers and Composites
    • /
    • v.27 no.4
    • /
    • pp.281-288
    • /
    • 1992
  • The purpose for this study is to examine the vulcanization characteristics, especially the damping, elastic modulus and viscous modulus properties of filler 50phr filled NR compounds and to find out the compounds which can be used as damping materials in industry. For this study, compounds were prepared with filler filled compounding formula. Their vulcanization characteristics, elastic modulus, viscous modulus and damping properties were examined by mean of the rheometrics dynamic spectrometer. The results of this study can be summarized as follows. 1. The elastic modulus values of the maxium under the condition of 1Hz frequency, showed the order as follows, $HAF>Silica>FEF>GPF>SRF>Clay>CaCO_3\;coated>CaCO_3$. 2. The damping values of the maxium under the condition of 1Hz frequency, showed the order as follows $Silica>HAF>FEF>GPF>SRF>Clay>CaCO_3\;coated>CaCO_3$.

  • PDF

Study on Rear Door Fixed Glass Weather-strip for Automobiles Using EPDM/Polypropylene Blend (I) (자동차용 Rear Door Fixed Glass Weather-strip 성형을 위한 EPDM과 Polypropylene의 Blend에 관한 연구 (I))

  • Park, Jong-Yun;Hwang, Sung-Hyuk;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.35 no.2
    • /
    • pp.115-121
    • /
    • 2000
  • In comparison with thermosetting rubber, thermoplastic elastomer (TPE) has various advantages such as simple processing, short cycle time and recycling of scrap. These advantages can lead to development of the high value-added rubber products due to reduction of the waste material, manufacturing cost and the defected product. This article involves a dynamic vulcanization method for EPDM/polypropylene blend, and the manufacturing of a fixed glass weather-strip by glass insert molding method using the blend. In order to investigate mechanical properties of the product, tensile strength, elongation, hardness and specific gravity were measured. Also morphological study was carried out using SEM. Developments of an efficient system of production and automatic process by molding of TPE and glass simultaneously are expected.

  • PDF

Studies on the Characteristics of Rubber Vulcanization Exotherm by Differential Scanning Calorimetry. (Differential Scanning Calorimetry에 의(依)한 고무의 가황발열특성(加黃發熱特性)에 관(關)한 연구(硏究))

  • Choi, Sei-Young;Paik, Nam-Chul
    • Elastomers and Composites
    • /
    • v.19 no.1
    • /
    • pp.13-31
    • /
    • 1984
  • The purposes of this dissertation are to demonstrate that DSC theromoanaytical methods of vulcanization can provide useful informations on the vulcanization characteristics of industrial formulations and also provides the potential basis for a rapid and complete method of sulfur and vulcanizing accelerator analysis for quality control. The influences of those factors such as heating rate, scan temperature, vucanizing accelerator's type and concentration upon vulcanization exotherm in NR and NBR compounds in the presence of vulcanizing accelerators such as TMTD,MBTS,DPG,TMTM,CBS, and MBT were evaluated by means of DSC. In order to examine the credibility in the DSC method, the same samples which were used for DSC method were studied to compare the DSC results with the ODR (Oscillating Disk Rheometer) data. The results obtained were as follows 1. In the DSC dynamic experiments, the observed enthalpy results from vulcanization depends upon the heating rate; In the range of 2 to $20^{\circ}C/min$ of heating rate, as the heating rate was increased the enthalpy change was also increased. However, over the heating rate of $30^{\circ}C/min$ it was observed that the enthalpy change was decreased as the heating rate was further increased. Without regard to the change of enthalpy, tremendous instantaneous heat evolving was observed in the range of high heating rates. 2. For the samples which are added with various vulcanizing accelerators, the activation energies of vulcanization were as follows; 3. Regarding to the influences of vulcanizining accelerator's types upon the characteristics of vulcanization exotherm, NR and NBR compounds in the presence of thiuramsulphide compounds type accelerators such as TMTD, TMTM, were exhibited sharper and higher vulclanization exotherm than others. From the resuts of DSC thermograms which was distributed in even shape in the broad temperature range, it was clearly shown that the guanidine compounds type accelerator such as DPG acts as a delayed acting accelerator. 4. In the comparison of DSC and ODR results, the dependency of temperature in the cure rate and the observed conversions show good agreements between two results. 5. In the same curatives, by the comparison of glass transition temperatures, it was possible to predict relative values of maximum torques. Consequently, from the present studies, it is shown that the DSC thermoanalytical method can provide an alternate new method for rapid and complete quality control analysis of rubber industry.

  • PDF

실란 개질제가 실리카충전고무 컴파운드에 미치는 영향

  • Kim, Gwang-Je
    • Rubber Technology
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • Effects of silane modifier, bis(triethoxysilylpropyl) tetrasulfide (TESPT(S4)) and bis(triethoxysilylpropyl) disulfide (TESPD(S2)), on silica filled compound were investigated upon processability, dynamic, mechanical, heat build-up, blowout properties, and silica dispersion in natural rubber (NR). The temperature of the S2 treated silica compound generated higher than that of the S4 treated compound during internal mixer compounding. The shear viscosity of the S2 compound exhibited lower than that of the S4 compound and the viscosity measured in dynamic mode was close to each other. The elongation modulus of the S2 compound exhibited lower than that of the S4; however, the tear resistance strength of the S2 compound exhibited higher than that of the S4 compound. The loss tan$\delta$ values of the S2 compound exhibited higher than those of the S4 at room temperature. The augmentation of the test temperature lowered the tan$\delta$ values of each compound, which results in close tan$\delta$ values to each other at $100^{\circ}C$. The S2 compound deformed less than the S4 compound, and the blowout time of each compound was close to each other. The S2 compound generated more heat build-up than the S4 compound. The abrasion loss of the S2 compound was less than that of the S4 compound. The size of the silica agglomerate reduced on both S4 and S2 compounds upon vulcanization. The addition of the bifunctional silanes (S2 and S4) on silica filled NR compound improved the processability of each compound and their effects were more significant on the S2 compound than the S4 compound. After vulcanization the silica agglomerate size of each compound reduced compared with before vulcanization.

  • PDF