• Title/Summary/Keyword: dynamic triaxial

Search Result 112, Processing Time 0.029 seconds

Analysis of Liquefaction using Stress Path in Silty Sand Grounds (실트질 모래지반의 응력경로를 이용한 액상화 분석)

  • Lee, Song;Kim, Tae-Hwoon;Rhee, Min-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.239-246
    • /
    • 2000
  • It has been generally much fine contents in West Coast of Korea. When cyclic shear stress causing liquefaction was estimated as using cyclic triaxial tests in these grounds, it didn't appear linear relations between deviator stress and confining stress where σ'₃ was more than 150 kpa. Namely, due to no normalization of cyclic shear stress ratio, the errors of this is increased. Therefore, more confining stress is increased, more increment of deviator stress is decreased. So, using linear relations between tanø'/sub d/ of dynamic internal friction angle and CSR where σ'₃ was less than 150 kpa, liquefaction of these grounds was evaluated. Also, as doing detail evaluation which had carried response analysis of earthquake, this appeared good results which was well compatible with empirical methods using N-value of SPT. It was thought that these result evaluated vulnerable liquefaction area more correct than existing methods. Also, characteristics of liquefaction in West Coast grounds was compared with clean sands, with analysis of behavior of pore pressure ratio and axial strain affected by fine contents, as cyclic loading was applied.

  • PDF

Resilient Moduli of Sub-ballast and Subgrade Materials (강화노반 및 궤도하부노반 재료의 회복탄성계수)

  • Park, Chul-Soo;Choi, Chan-Yong;Choi, Choong-Lak;Mok, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1042-1049
    • /
    • 2007
  • Recently, a theoretically-sound design approach, using an elastic multilayer model, is attempted in trackbed designs for the construction of high speed railways and new lines of conventional railways. In the elastic multilayer model, the stress-dependent resilient modulus($E_R$) is an important input parameter, that is, reflects substructure performance under repeated traffic loading. However, the evaluation method for resilient modulus using repeated loading triaxial test is not fully developed for practical purpose, because of costly equipment and the significantly fluctuated values depending on the testing equipment and laboratory personnel. In this study, the paper will present an indirect method to estimate the resilient modulus using dynamic properties. The resilient modulus of crushed stone, which is the typical material of sub-ballast, was calculated with the measured dynamic properties and the range of stress level of the sub-ballast, and approximated with the power model combined with bulk and deviatoric stresses. The resilient modulus of coarse grained material decreases with increasing deviatoric stress at a confining pressure, and increases with increasing bulk stress. Sandy soil(SM classified from Unified Soil Classification System) of subgrade was also evaluated and best fitted with the power model of deviatoric stress only.

  • PDF

Evaluation of Liquefaction Potentional on Saturated Sand Layers in Korea (on the Development of Constitutive Relationships) (우리나라 포화사질지반의 액상화 포텐셜 평가 (구함관계 개발을 중심으로))

  • 도덕현;장병욱
    • Geotechnical Engineering
    • /
    • v.6 no.3
    • /
    • pp.41-52
    • /
    • 1990
  • To investigate the liquefaction potential of sands, a series of untrained cyclic triaxial compression tests is carried out on the samples of Ottawa, Joomoonjin, Hn river and Hongseung sands. The constitutive equations of sands are derived to explain the mechanical behavior of sands under cyclic stresses, and are applicable to liquefaction analysis. The following results are obtainded in this study. 1. Sands with the lower confining pressure or relative density are to be easily liquefied, and when the amplitude of cyclic stress are large, liquefaction takes places over only a few cycles. 2. Stress ratio, porewater pressure ratio and cyclic shear strains are to be good criteria to evaluate liquefaction potential of sands. 3. Hongseung sands which contains some silty clay shows higher dynamic properties than other sands. 4. The dynamic behaviors of undisturbed Hongseung sand are about same as those of dense sands. It is noted that undisturbed Hongseung sand shows higher liquefaction potential than the samples made by pluviation under same relative density, 5. The constitutive equations of soils under cyclic loads are developed based on the theory of elasto-plasticity, logarithmic stress-strain rela'tionship, non-associated flow rule and the concept of the boundary surface. The derived equations is applicable to predict the behavior of sands under cyclic loads and liquefaction potential with a higher accuracy. 6. Based on results of the study it may be concluded that cracks of the foundations and dislocation of the structures at Hongseung earthquakes(Oct. 7, 1978, Richter scald 5.2) are not brought by the liquefaction process.

  • PDF

Dynamic Shear Modulus and Damping Ratio of Soft Clay (연약점토의 동력학적 전단탄성계수 및 감쇠비)

  • 하광현
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.55-66
    • /
    • 1986
  • Considering the effects of confining pressure, initial shear stress, cyclic stress ratio and number of loading cycles, cyclic triaxial tests are carried out to clarify the soil dynamic properties such as shear modulus and value of material damping of clay under undrained cyclic loading conditions. The results show that no obvious dependency on initial shear stress and effective confining stress are recognized in the shear modulus and damping ratio plotted versus strain. However, the shear modulus decreases and the damping ratio increases with increasing axial strain. When compared with others, it is also revealed that the shear moduli are distributed within the range curves obtained using empirical equations derived by Marcuson et al. (3) and Kokusho et al. (4), and damping ratios are distributed between the curves obtained by Kokusho et al. (4) and Ishihara et al. (9).

  • PDF

Design and characterization of a compact array of MEMS accelerometers for geotechnical instrumentation

  • Bennett, V.;Abdoun, T.;Shantz, T.;Jang, D.;Thevanayagam, S.
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.663-679
    • /
    • 2009
  • The use of Micro-Electro-Mechanical Systems (MEMS) accelerometers in geotechnical instrumentation is relatively new but on the rise. This paper describes a new MEMS-based system for in situ deformation and vibration monitoring. The system has been developed in an effort to combine recent advances in the miniaturization of sensors and electronics with an established wireless infrastructure for on-line geotechnical monitoring. The concept is based on triaxial MEMS accelerometer measurements of static acceleration (angles relative to gravity) and dynamic accelerations. The dynamic acceleration sensitivity range provides signals proportional to vibration during earthquakes or construction activities. This MEMS-based in-place inclinometer system utilizes the measurements to obtain three-dimensional (3D) ground acceleration and permanent deformation profiles up to a depth of one hundred meters. Each sensor array or group of arrays can be connected to a wireless earth station to enable real-time monitoring as well as remote sensor configuration. This paper provides a technical assessment of MEMS-based in-place inclinometer systems for geotechnical instrumentation applications by reviewing the sensor characteristics and providing small- and full-scale laboratory calibration tests. A description and validation of recorded field data from an instrumented unstable slope in California is also presented.

Modified K&C Model for Numerical Analysis of Steel-Fiber-Reinforced Concrete Structure (강섬유 보강 콘크리트 구조물의 해석을 위한 K&C모델의 보정)

  • Park, Gang-Kyu;Lee, Minjoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.2
    • /
    • pp.85-91
    • /
    • 2021
  • This paper introduces a modified Karagozian & Case concrete model (K&C model) for the numerical analysis of a steel-fiber-reinforced concrete (SFRC) structure subjected to projectile impact. The original K&C model was calibrated to consider the effects of steel fibers accurately by modifying the strength surfaces and input parameters. Single element tests were then conducted and compared with uniaxial and triaxial compressive data to verify the modified model. With the application of a dynamic increase factor, the finite element model of the SFRC structure subjected to projectile impact was constructed. Thereafter, the applicability of the modified material model was examined by comparisons with the experimental results.

Development of Rutting Model for Asphalt Mixtures using Laboratory and Accelerated Pavement Testing (실내 및 포장가속시험를 이용한 아스팔트 혼합물의 소성변형 모형 개발)

  • Lee, Sang-Yum;Lee, Hyun-Jong;Huh, Jae-Won;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.79-89
    • /
    • 2008
  • The pavement performance model is the most important factor to determine the pavement life in the mechanistic-empirical pavement design guide (MEPDG). As part of Korean Pavement Research Program (KPRP), the Korean Pavement Design Guide (KPDG) is currently being developed based on mechanistic-empirical principle. In this paper, the rutting prediction model of asphalt mixtures, one of the pavement performance model, has been developed using triaxial repeated loading testing data. This test was conducted on various types of asphalt mixtures for investigating the rutting characteristics by varying with the temperature and air void. The calibration process was made for the coefficients of rutting prediction model using the accelerated pavement testing data. The accuracy of prediction model can be increased when by considering the effect of individual rutting properties of materials rather than shear stresses with depths.

  • PDF

A Study on the Liquefaction Behavior of Soil in Jangbogo Station (남극 장보고기지 현장시료의 액상화거동 특성 연구)

  • Park, Keunbo;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.49-57
    • /
    • 2014
  • In this study, in order to take advantage of samples collected in the Jangbogo station, and to grasp the liquefaction resistance characteristics of the dynamic load was performed cyclic triaxial test. Also, through the comparison with the existing literature. The test results, for the relationship between number of cycles for the same cyclic shear stress ratio and the cyclic shear stress ratio to produce an axial strain of 5%, in all samples, the cyclic shear stress ratio to liquefaction for the specimen, which has been liquefied, was increased, whereas number of cycles were reduced. The cyclic shear stress ratio of samples first decrease up to the fine content of about 10%. After this strength level, there is a little increase in cyclic shear stress ratio with increasing fine content. In addition, the cyclic shear stress ratio between cohesive strength, mean particle size, and friction angle decrease but some time later, there was a tendency that cyclic shear stress ratio is a little increased.

Experimental Analysis of Liquefaction Resistance Characteristics of Silica Sand Used in Earthquake Simulation Tests (국내 지진 모의시험에 이용되는 규사의 액상화 저항특성에 관한 실험적 분석)

  • Choi, Jaesoon;Jin, Yunhong;Baek, Woohyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.5-13
    • /
    • 2022
  • In this study, dynamic characteristics and liquefaction resistance characteristics of silica sand which is used to simulate sandy layer were conducted using the cyclic triaxial test according to the relative density difference. The difference in liquefaction resistance with the relative density was confirmed through the test results, which the relative density conditions were changed to 40%, 60%, and 80%, and the cyclic resistance ratio (CRR) curve of the silica sand was obtained. In addition, in order to examine the validity of the liquefaction resistance ratio (CRR) curve, artificial silica sand ground was created, and liquefaction potential was evaluated through the simple assessment method and the detailed assessment method, and the safety factors of each were compared.

Dynamic failure features and brittleness evaluation of coal under different confining pressure

  • Liu, Xiaohui;Zheng, Yu;Hao, Qijun;Zhao, Rui;Xue, Yang;Zhang, Zhaopeng
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.401-411
    • /
    • 2022
  • To obtain the dynamic mechanical properties, fracture modes, energy and brittleness characteristics of Furong Baijiao coal rock, the dynamic impact compression tests under 0, 4, 8 and 12 MPa confining pressure were carried out using the split Hopkinson pressure bar. The results show that failure mode of coal rock in uniaxial state is axial splitting failure, while it is mainly compression-shear failure with tensile failure in triaxial state. With strain rate and confining pressure increasing, compressive strength and peak strain increase, average fragmentation increases and fractal dimension decreases. Based on energy dissipation theory, the dissipated energy density of coal rock increases gradually with growing confining pressure, but it has little correlation with strain rate. Considering progressive destruction process of coal rock, damage variable was defined as the ratio of dissipated energy density to total absorbed energy density. The maximum damage rate was obtained by deriving damage variable to reflect its maximum failure severity, then a brittleness index BD was established based on the maximum damage rate. BD value declined gradually as confining pressure and strain rate increase, indicating the decrease of brittleness and destruction degree. When confining pressure rises to 12 MPa, brittleness index and average fragmentation gradually stabilize, which shows confining pressure growing cannot cause continuous damage. Finally, integrating dynamic deformation and destruction process of coal rock and according to its final failure characteristics under different confining pressures, BD value is used to classify the brittleness into four grades.