• Title/Summary/Keyword: dynamic transformation

Search Result 523, Processing Time 0.022 seconds

Physical Properties of Red Pepper Powder at Different Particle Sizes (고춧가루의 입도별 물리적 특성)

  • Oh, Seung Hee;Kang, You Ri;Lee, Sang Hoon;Hwang, In Guk;Yoo, Seon Mi;Kim, Hae Young;Lee, Junsoo;Jeong, Heon Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.421-426
    • /
    • 2013
  • We evaluated physical properties such as density, compressive characteristics, irrecoverable work, and stress relaxation of red pepper powder with different particle sizes. The particle sizes showed a normal distribution in size, with a particle size of $150{\sim}600{\mu}m$ accounting for 70.95% of the particles in the Hanbando cultivar and 82.21% in the Cheongyang cultivar. Loose bulk density ranged between 0.34 and $0.45g/cm^3$, while tapped bulk density ranged between 0.43 and $0.56g/cm^3$. The Hausner ratio was highest (1.531) at a particle size below $150{\mu}m$ in the Cheongyang cultivar. The compressibility and compression ratios were 0.001351~0.004383 and 1.0062~1.0265, respectively. Irrecoverable work ranged between 69.16% and 90.24%. The $K_2$ value and stress relaxation characteristics were greatest (1.74 and 44.92%, respectively) at particle sizes of $300{\sim}425{\mu}m$ in the Cheongyang cultivar. The dynamic angle of repose was $32.84-49.84^{\circ}$. Overall, particle sizes below $150{\mu}m$ had the highest compactibility, cohesiveness, and transformation.

A Study on the Spatial Characteristics of Golf Courses (골프코스의 공간적 특성에 관한 연구)

  • Kim, Chung-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.15-26
    • /
    • 2008
  • The purpose of this study is to attempt to interpret golf courses as event-generating spaces with consideration given to the time factor. Through a golf game, a variety of events such as the tee shot, second shot, putt, and hole out are generated. These events have been connected to a series of events after hole out such as birdie, par, bogey and so on. The series of events do not always occur in the same way. They reveal unexpected changes over time. These unexpected changes cause changes in the spatial characteristics and offer unforgettable memories for golfers. Gilles Deleuze mentioned the spatial characteristics as striated space and smooth space. Striated space can be defined as sedentary space. It is distant vision-optical space that has dimensional, metric and centered characteristics, whereas smooth space is defined as nomadic, close vision-haptic space that has directional and acentered characteristics. This study focused on the analysis of spatial characteristics according to striated space and smooth space. Golf courses generally show the characteristics of striated space before beginning the game. As soon as the game begins, however, the golf courses are converted into an event-generating space. The characteristics of striated space are transformed into smooth space, a nomadic space that amplifies the dynamic, changeable, de-scaled and non-metric system. Through the whole game, this transformation is dramatically repeated. On the other hand, the golfer, the subject of the game, senses the phenomenological experience in the process of orientation, center, definition, and domestication.

A model experiment on the underwater shape of deepsea bottom trawl net (심해 저층트롤망의 수중형상에 관한 모형실험)

  • Park, Gwang-Je;Lee, Ju-Hee;Kim, Hyung-Seok;Jeong, Sun-Beom;Oh, Taeg-Yun;Bae, Jae-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.3
    • /
    • pp.134-147
    • /
    • 2006
  • A model experiment using circulation water channel was carried out to investigate the dynamic characteristics of bottom trawl net which can be used in sea mount of North Pacific. Hydrodynamic resistance and shape variation according to the flow velocity and angle of hand rope transformation for net were measured, and experimental value was analyzed as the value of full-scale bottom trawl net. The results summarized are as follows; At the $30^{\circ}$ of angle of hand rope to net, hydrodynamic resistance varied from 0.5kgf to 2.68kgf as the flow velocity increased between 0.31m/s and 0.92m/s, and formula of hydrodynamic resistance for the model net was $F_m=3.04\;{\cdot}\;{\upsilon}^{1.53}$. At the fixed angle of hand rope, Net height was low and Net width was high according to the increase of flow velocity, and in addition, vertical opening was low and Net width was high by the increase of angle of hand rope at the fixed flow velocity. At the $30^{\circ}$ of angle of hand rope to net, net opening area was $0.214m^2$ as flow velocity was 0.61m/s, and formula of net opening area for the model net was $S_m=-0.22{\upsilon}+0.35$. At the $30^{\circ}$ of angle of hand rope to net, catch efficiency seemed to be highest as $0.319m^3/s$ of filtering volume at the 0.76m/s(51kt's) of flow velocity. Shape variation of net showed the gradual laminar transform for the variation of flow velocity but there needed some improvements due to the occurrence of shortening at the ahead of wing net.

An Introduction to Quantitative Analyses of Sleep EEG Via a Wavelet Method (뇌Wavelet 방법론을 이용한 수면뇌파분석 고찰)

  • Kim, Jong-Won
    • Sleep Medicine and Psychophysiology
    • /
    • v.19 no.1
    • /
    • pp.11-17
    • /
    • 2012
  • Objective: Among various methods developed to quantitatively explore electroencephalograms (EEG), we focused on a wavelet method that was known to yield robust results under nonstationary conditions. The aim of this study was thus to introduce the wavelet method and demonstrate its potential use in clinical sleep studies. Method: This study involved artificial EEG specifically designed to validate the wavelet method. The method was performed to obtain time-dependent spectral power and phase angles of the signal. Synchrony of multichannel EEG was analyzed by an order parameter of the instantaneous phase. The standard methods, such as Fourier transformation and coherence, were also performed and compared with the wavelet method. The method was further validated with clinical EEG and ERP samples available as pilot studies at academic sleep centers. Result: The time-frequency plot and phase synchrony level obtained by the wavelet method clearly showed dynamic changes in the EEG waveforms artificially fabricated. When applied to clinical samples, the method successfully detected changes in spectral power across the sleep onset period and identified differences between the target and background ERP. Conclusion: Our results suggest that the wavelet method could be an alternative and/or complementary tool to the conventional Fourier method in quantifying and identifying EEG and ERP biomarkers robustly, especially when the signals were nonstationary in a short time scale (1-100 seconds).

An Inquiry into the Triple Helix as a New Regional Innovation Model (새로운 지역혁신 모형으로서 트리플 힐릭스에 대한 이론적 고찰)

  • Lee, Chul-Woo;Lee, Jong-Ho;Park, Kyung-Sook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.335-353
    • /
    • 2010
  • Following the emergence of a knowledge-based economy, the triple helix model has been recognized as a new - regional and national - innovation model. This model seeks to understand the innovation process that is centered upon the university-industry-government interactions. The governance of the triple helix innovation system can be divided into three models according to the structure and depth of university-industry-government interactions. In the context of evolution, the triple helix can be established through the following three processes of development; i) internal transformation of each helix, ii) impacts of one helix on another helix, and iii) horizontal interactions among three helices. In theory, the triple helix model can be covered as part of the innovation system perspective. Compared to the innovation system perspective, the triple helix model tends to pay, however, more attention to the incompleteness of innovation system and the role of university in the process of knowledge creation. In view of regional innovation, the triple helix can be sustained when the triple helix spaces, including knowledge space, consensus space and innovation space, are created and the three triple helix spaces interact with one another. The existing literature on the triple helix model tends to make selectively use of only a single method between the qualitative method and the quantitative method, although both have shortcomings to reveal the dynamic characteristics of university-industry-government relations. Therefore, research on the triple helix is required to reconcile with two research methods, which are distinct but complementary in nature.

  • PDF

Dynamic Response Analysis of Pressurized Air Chamber Breakwater Mounted Wave-Power Generation System Utilizing Oscillating Water Column (진동수주형 파력발전 시스템을 탑재한 압축공기 주입식 방파제의 동적거동 해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Yook, Sung-Min;Jung, Yeong-Hoon;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.225-243
    • /
    • 2014
  • As the economic matters are involved, applying the WEC, which is used for controlling waves as well as utilizing the wave energy on existing breakwater, is preferred rather than installing exclusive WEC. This study examines the OWC mounted on a pressurized air chamber floating breakwater regarding the functionality of both breakwater and wave-power generation. In order to verify the performance as a WEC, the velocity of air flow from pressurized air chamber to WEC has to be evaluated properly. Therefore, numerical simulation was implemented based on BEM from linear velocity potential theory as well as Boyle's law with the state equation to analyze pressurized air flow. The validity of the obtained values can be determined by comparing the previous results from numerical analysis and empirically obtained values of different shapes. In the actual numerical analysis, properties of wave deformation around OWC system mounted on fixed type and floating type breakwaters, motions of the structure with air flow velocities are investigated. Since, the wind power generating system can be hybridized on the structure, it is expected to be applied on complex power generation system which generates both wind and wave power energy.

A Comprehensive Groundwater Modeling using Multicomponent Multiphase Theory: 1. Development of a Multidimensional Finite Element Model (다중 다상이론을 이용한 통합적 지하수 모델링: 1. 다차원 유한요소 모형의 개발)

  • Joon Hyun Kim
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.89-102
    • /
    • 1996
  • An integrated model is presented to describe underground flow and mass transport, using a multicomponent multiphase approach. The comprehensive governing equation is derived considering mass and force balances of chemical species over four phases(water, oil, air, and soil) in a schematic elementary volume. Compact and systemati notations of relevant variables and equations are introduced to facilitate the inclusion of complex migration and transformation processes, and variable spatial dimensions. The resulting nonlinear system is solved by a multidimensional finite element code. The developed code with dynamic array allocation, is sufficiently flexible to work across a wide spectrum of computers, including an IBM ES 9000/900 vector facility, SP2 cluster machine, Unix workstations and PCs, for one-, two and three-dimensional problems. To reduce the computation time and storage requirements, the system equations are decoupled and solved using a banded global matrix solver, with the vector and parallel processing on the IBM 9000. To avoide the numerical oscillations of the nonlinear problems in the case of convective dominant transport, the techniques of upstream weighting, mass lumping, and elementary-wise parameter evaluation are applied. The instability and convergence criteria of the nonlinear problems are studied for the one-dimensional analogue of FEM and FDM. Modeling capacity is presented in the simulation of three dimensional composite multiphase TCE migration. Comprehesive simulation feature of the code is presented in a companion paper of this issue for the specific groundwater or flow and contamination problems.

  • PDF

A Study on Conversion Methods for Generating RDF Ontology from Structural Terminology Net (STNet) based on RDB (관계형 데이터베이스 기반 구조적학술용어사전(STNet)의 RDF 온톨로지 변환 방식 연구)

  • Ko, Young Man;Lee, Seung-Jun;Song, Min-Sun
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.2
    • /
    • pp.131-152
    • /
    • 2015
  • This study described the results of converting RDB to RDF ontology by each of R2RML method and Non-R2RML method. This study measured the size of the converted data, the conversion time per each tuple, and the response speed to queries. The STNet, a structured terminology dictionary based on RDB, was served as a test bed for converting to RDF ontology. As a result of the converted data size, Non-R2RML method appeared to be superior to R2RML method on the number of converted triples, including its expressive diversity. For the conversion time per each tuple, Non-R2RML was a little bit more faster than R2RML, but, for the response speed to queries, both methods showed similar response speed and stable performance since more than 300 numbers of queries. On comprehensive examination it is evaluated that Non-R2RML is the more appropriate to convert the dynamic RDB system, such as the STNet in which new data are steadily accumulated, data transformation very often occurred, and relationships between data continuously changed.

A Study on the Architectural Environment as a Combination of Performance and Event (퍼포먼스.이벤트의 결합체로서 건축환경연구)

  • 김주미
    • Archives of design research
    • /
    • v.14
    • /
    • pp.121-138
    • /
    • 1996
  • The purpose of this study is to develop a new architectural language and design strategies that would anticipate and incorporate new historical situations and new paradigms to understand the world. It consists of four sections as follows: First, it presents a new interpretation of space, human body, and movement that we find in modern art and tries to combine that new artistic insight with environmental design to provide a theoretical basis for performance-event architecture. Second, it conceives of architectural environment as a combination of space, movement, and probabilistic situations rather than a mere conglomeration of material. It also perceives the environment as a stage for performance and the act of designing as a performance. Third, in this context, man is conceived of as an organic system that responds to, interacts with, and adapts himself to his environment through self-regulation. By the same token, architecture should be a dynamic system that undergoes a constant transformation in its attempt to accommodate human actions and behaviors as he copes with the contemporary philosophy characterized by the principle of uncertainty, fast-changing society, and the new developments in technology. Fourth, the relativistic and organic view-point that constitutes the background for all this is radically different from the causalistic and mechanistic view that characterized the forms and functions of modernistic design. The present study places a great emphases on dematerialistic conception of environment and puts forth a disprogramming method that would accommodate interchangeability in the passage of time and the intertextuality of form and function. In the event, performance-event architecture is a strategy based on the systems world-view that would enable the recovery of man's autonomy and the reconception of his environment as an object of art.

  • PDF

Analysis and Measurement of the Magnetic Fields Cause by Operation of Electromotive Installations (전동력설비의 운전에 의해 발생되는 자계의 측정과 해석)

  • 이복희;길경석
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.2
    • /
    • pp.58-67
    • /
    • 1995
  • The paper describes the variation of magnetic fields caused by the operation of induction motors. The measuring system consists of the self-integrating magnetic field sensor, amplifier, and active integrator. From the calibration experiments, the frequency bandwidth of the magnetic field measuring system ranges from 20[Hz] to 300[kHz] and sensitivity is 0.234(mV/$\mu\textrm{T}$]. The magnetic fields generated under steady state and starting operations of duction motor are recorded by the proposed measuring system, and the fast Fourier transformation(FFT) of the measured data is performed to analyze the harmonic components. A single pulsed magnetic field is strongly caused by direct starting the induction motor, and its peak value is greater than 5 times as compared with the steady state value. The long transient duration and high intensity originates from the large inductance and dynamic characteristic of the induction motor, During the steady state operation of induction motor, subharmonics of magnetic field components, which depend on the pole number of induction motor, are observed. The lower order power-line harmonics can be inferred from the voltage flicker and current ripple which are derived from the torque fluctuation of induction motor. In the case of the induction motor drived by inverter, the harmonics of magnetic field are much more than those caused by direct starting method and are found generally to increase with decreasing the driving frequency.

  • PDF