• 제목/요약/키워드: dynamic transformation

Search Result 525, Processing Time 0.03 seconds

Structural Dynamic System Reconstruction for Modal Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.150-150
    • /
    • 2000
  • We as modal parameter estimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of multivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre- and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios on be estimated using tile coordinates of the structural system reconstructed fro the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting.

  • PDF

Structural Dynamic System Reconstruction for Model Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.527-527
    • /
    • 2000
  • Wean modal parameter estiimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of mllltivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios can be estimated using the coordinates of the structural system reconstructed from the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting..

  • PDF

Experimental Study on the Characteristics of Air-Chamber Structure (압기형구조물의 특성에 관한 실험적 연구)

  • Kim, W.K.;Kang, I.S.;Kwak, K.S.;Kim, D.S.
    • Journal of Korean Port Research
    • /
    • v.8 no.1
    • /
    • pp.31-40
    • /
    • 1994
  • Experimental study is carried out to verify the advantages of an air chamber structure in controlling the wave transformation and its dynamic responses. The open, cross and vertical mooring systems are employed in experiments to investigate the variations of wave transmission ratio, natural period of the structures and tensile force acting on the mooring line according to the change of the initial air depth inside the air chamber structure. Experimental results show that the air chamber floating structure expresses the smaller wave transmission ratio and tensile force acting on the mooring line than general one without air chamber, expecially in the long period region of incident wave. Therefore, it is concluded that the air chamber structure suggested in this study can play good roles as a wave controlling castal structure, and a substitute structure of a general floating structure.

  • PDF

Evolution of Industrial IoT Network Technology: Past, Present, and Future Trends (산업용 IoT 네트워크 기술의 진화: 과거, 현재, 미래 동향)

  • T.J. Park;E.H. Kim;J.S. Cha;K.S. Lee
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.3
    • /
    • pp.20-28
    • /
    • 2023
  • Wireless communication technology has mainly been used to fulfill the demands of industrial sites at which performance is not a critical concern. However, ongoing discussions and efforts are now focused on securing core wireless communication technologies to enable the transformation or expansion of wired industrial IoT (Internet of Things) network technology into a flexible and dynamic smart manufacturing system. This paper provides an overview of current wireless industrial IoT network technology and the recent wireless time-sensitive networking technology. It outlines the challenging level of reliability required for wireless communication technology to coexist with or replace its wired counterpart in future smart manufacturing systems. Additionally, we introduce ultra-reliable time deterministic network as the core technology of wireless industrial communications and focus on its reliability and delay characteristics.

Automatic Berthing Finite-time Control Considering Transmission Load Reduction

  • Liu Yang;Im Nam-kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.168-169
    • /
    • 2022
  • In this study, we investigates the auto-berthing problem for the underactuated surface vessel in the presence of constraints of dynamic uncertainties, finite time, transmission load, and environmental disturbance. A novel control scheme is proposed by fusing the finite time control technology and the event-triggered input algorithm. In the algorithm, differential homeomorphism coordinate the transformation is used to solve the problem of underactuation. Then, we apply the finite time technology and event triggered to save the time of the berthing vessel and relieve transmission burden between the controller and the vessel respectively. Moreover, a radial basis function network is used to approximate unknown nonlinear functions, and minimum learning parameters are introduced to lessen the computational complexity. A sufficient effort has been made to verify the stability of the closed-loop system based on the Lyapunov stability theory. Finally, simulation results display the effectiveness of the proposed scheme.

  • PDF

Blockchain-Enabled Decentralized Clustering for Enhanced Decision Support in the Coffee Supply Chain

  • Keo Ratanak;Muhammad Firdaus;Kyung-Hyune Rhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.260-263
    • /
    • 2023
  • Considering the growth of blockchain technology, the research aims to transform the efficiency of recommending optimal coffee suppliers within the complex supply chain network. This transformation relies on the extraction of vital transactional data and insights from stakeholders, facilitated by the dynamic interaction between the application interface (e.g., Rest API) and the blockchain network. These extracted data are then subjected to advanced data processing techniques and harnessed through machine learning methodologies to establish a robust recommendation system. This innovative approach seeks to empower users with informed decision-making abilities, thereby enhancing operational efficiency in identifying the most suitable coffee supplier for each customer. Furthermore, the research employs data visualization techniques to illustrate intricate clustering patterns generated by the K-Means algorithm, providing a visual dimension to the study's evaluation.

Size dependent torsional vibration of a rotationally restrained circular FG nanorod via strain gradient nonlocal elasticity

  • Busra Uzun;Omer Civalek;M. Ozgur Yayli
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.175-186
    • /
    • 2024
  • Dynamical behaviors of one-dimensional (1D) nano-sized structures are of great importance in nanotechnology applications. Therefore, the torsional dynamic response of functionally graded nanorods which could be used to model the nano electromechanical systems or micro electromechanical systems with torsional motion about the center of twist is examined based on the theory of strain gradient nonlocal elasticity in this work. The mathematical background is constructed based on both strain gradient theory and Eringen's nonlocal elasticity theory. The equation of motions and boundary conditions of radially functionally graded nanorods are derived using Hamilton's principle and then transformed into the eigenvalue analysis by using Fourier sine series. A general coefficient matrix is obtained to assemble the Stokes' transformation. The case of a restrained functionally graded nanorod embedded in two elastic springs against torsional rotation is then deeply investigated. The effect of changing the functionally graded index, the stiffness of elastic boundary conditions, the length scale parameter and nonlocal parameter are investigated in detail.

The Transformation of Korean Drama Discourse in Malaysia in the OTT Era

  • Kihyung Bae;Hong Sungah;Lee Sungmin
    • Asian Journal for Public Opinion Research
    • /
    • v.12 no.3
    • /
    • pp.142-165
    • /
    • 2024
  • This article examines the shifts in discourse surrounding Korean dramas in Malaysia, a core market for the Korean Wave (Hallyu), to understand the evolving perceptions and reception of Hallyu as a role model. Employing a discourse analysis of 14 Malaysian newspapers available online from 2016 to 2022, a period marked by the rise of over-the-top (OTT) media, the study reveals a significant transition in the prevailing narrative. From 2016 to 2019, the dominant discourse was characterized by conservatism and "cultural protectionism," reflecting a tension in attitudes towards the Korean Wave. However, from 2020 onwards, there was a gradual change in perceptions and attitudes, with an increasing emphasis on the economic and cultural value of Hallyu. This shift towards an "economic discourse" illustrates a growing perception of Korean dramas as an opportunity and catalyst for regional economic development in the Malaysian context, rather than a crisis. The study highlights the dynamic nature of the Korean Wave discourse in Malaysia and its evolution in response to the changing media landscape and socio-economic factors.

Study on Shape Design Method of Cycloidal Plate Gear (사이크로이드 판기어의 형상설계법에 관한 연구)

  • Sin, Jung-Ho;Yun, Ho-Eop;Gang, Dong-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.70-80
    • /
    • 2001
  • A cycloid reducer is one of the rotational velocity reduction equipments of machinery. It has advantages of the higher reduction ratio, the higher accuracy, the easier adjustment of transmission ratio and the smaller workspace than other kinds of reducer. A cycloidal plate gear is a main part of the cycloid reducer. Its tooth shape is peculiar because of gearing with the roller gear that has the several rollers on the circular line. And then it can be designed to contact all teeth to rollers. So, the cycloid reducer has the good characteristics in the dynamic properties and the zero-backlash in the contact motion. It can be used in robots, high-precision machines and high capacity machinery. This paper proposes a new approach for the shape design of the cycloidal plate gear and presents a Computer-Aided-Design program developed by the proposed method. The first part of this paper defines the two types of the cycloid reducers and explains their mechanisms. The second part defines the instant velocity centers for each type of the cycloid reducers and calculates the contact angles and the contact points by using te geometric relationships and the kinematical properties of the reducers. The third part generates the full shape of the cycloidal plate gear by the coordinate transformation technique. Finally, this paper presents two examples for the shape design of the cycloidal plate gear in order to prove the theory of the proposed method in this paper and the accuracy of the \"CycloGear Designer\".

Quantitative Determination of Fe-oxidation State by Electron Energy Loss Spectroscopy (EELS) (전자에너지 손실분광 분석법을 이용한 정량적 철산화수 측정)

  • Yang, Ki-Ho;Kim, Jin-Wook
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.189-194
    • /
    • 2012
  • The consequences of microbe-mineral interaction often resulted in the chemical, structural modification, or both in the biologically induced mineral. It is inevitable to utilize the high powered resolution of electron microscopy to investigate the mechanism of biogenic mineral transformation at nano-scale. The applications of transmission electron microscopy (TEM) capable of electron energy loss spectroscopy (EELS) to the study of microbe-mineral interaction were demonstrated for two examples: 1) biogenic illite formation associated with structural Fe(III) reduction in nontronite by Fereducing bacteria; 2) siderite phase formation induced by microbial Fe(III) reduction in magnetite. In particular, quantification of the changes in Fe-oxidation state at nanoscale is essential to understand the dynamic modification of minerals resulted from microbial Fe reduction. The procedure of EELS acquisition and advantages of EELS techniques were discussed.