DOI QR코드

DOI QR Code

Quantitative Determination of Fe-oxidation State by Electron Energy Loss Spectroscopy (EELS)

전자에너지 손실분광 분석법을 이용한 정량적 철산화수 측정

  • Yang, Ki-Ho (Department of Earth System Sciences, Yonsei University) ;
  • Kim, Jin-Wook (Department of Earth System Sciences, Yonsei University)
  • 양기호 (연세대학교 지구시스템과학과) ;
  • 김진욱 (연세대학교 지구시스템과학과)
  • Received : 2012.03.29
  • Accepted : 2012.04.20
  • Published : 2012.04.28

Abstract

The consequences of microbe-mineral interaction often resulted in the chemical, structural modification, or both in the biologically induced mineral. It is inevitable to utilize the high powered resolution of electron microscopy to investigate the mechanism of biogenic mineral transformation at nano-scale. The applications of transmission electron microscopy (TEM) capable of electron energy loss spectroscopy (EELS) to the study of microbe-mineral interaction were demonstrated for two examples: 1) biogenic illite formation associated with structural Fe(III) reduction in nontronite by Fereducing bacteria; 2) siderite phase formation induced by microbial Fe(III) reduction in magnetite. In particular, quantification of the changes in Fe-oxidation state at nanoscale is essential to understand the dynamic modification of minerals resulted from microbial Fe reduction. The procedure of EELS acquisition and advantages of EELS techniques were discussed.

생지화학적 반응으로 생성된 광물은 화학적 혹은 구조적 변화를 보여주고 있다. 이러한 광물형성의 메커니즘을 밝히기 위해서는 고해상도를 가진 전자현미경을 이용한 나노스케일 분석이 불가피 하다. 투과전자현미경에 장착되어있는 전자에너지 손실분광 분석법 (EELS)을 이용하여 미생물-광물반응 시 일어나는 현상을 두 가지의 예를 들어서 설명하고자 한다. 1) 철 환원 박테리아에 의한 논트로나이트 의 일라이트 로의 전이; 2) 자철석의 환원으로 인한 능철석의 형성. 특히 철산화/환원의 정량적 분석을 통하여 시간적 변화에 따른 철 산화도 측정은 생지화학적 광물변화에 대한연구를 용이하게 해준다. 따라서 본 논문은 EELS의 분석방법 및 장점을 소개함을 목적으로 한다.

Keywords

References

  1. Childers, S.E., Ciufo, S. and Lovley, D.R. (2002) Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature, v.416, p.767-769. https://doi.org/10.1038/416767a
  2. Daulton, T.L., Little, B.J., Lowe, K. and Jones-Meehan, J. (2002) Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction. Journal of Microbiological Methods, v.50, p.39-54. https://doi.org/10.1016/S0167-7012(02)00013-1
  3. Dyar, M. D., Solberg, T. C. and Burns, R. G. (1986) The Effects of Composition, Oxygen Fugacity, and Crystal Structure on the Color of Hibonite. Lunar and Planetary Scienc, v.17, p.194-195.
  4. Garvie, L.A.J. and Craven, A.J. (1994) Use of electronenergy loss near-edge fine structure in the study of minerals. American Mineralogist, v.79, p.411-425.
  5. Golla, U. and Putnis, A. (2001) Valence state mapping and quantitative electron spectroscopic imaging of exsolution in titanohematite by energy-filtered TEM. Physics and Chemistry of Minerals, v.28, p.119-129. https://doi.org/10.1007/s002690000136
  6. Kim, J.W., Dong, H., Seabaugh, J., Newell, S.W. and Eberl, D.D. (2004) Role of microbes in the smectite-to-illite reaction. Science, v.303, p.830-832. https://doi.org/10.1126/science.1093245
  7. Kim, J.W. and Dong, H. (2011) Application of electron energy loss spectroscopy (EELS) and energy filtered transmission electron microscopy (EFTEM) to the study of mineral transformation associated with microbial Fereduction of magnetite. Clays & Clay Minerals, v.59, p.176-188. https://doi.org/10.1346/CCMN.2011.0590206
  8. Leapman, R.D., Grunes, L.A. and Fejes, P.L. (1982) Study of the $L_{23}$ edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. The American Physical Society, v.26, p.614-635
  9. Leapman, R.D. and Sywt, C.R. (1988) Separation of overlapping core edges in electron energy loss spectra by multiple-least-squares fitting. Ultramicroscopy, v.26, p.393-403. https://doi.org/10.1016/0304-3991(88)90239-2
  10. Li, Y.L., Zhang, C.L., Yang, J., Deng, B. and Vali, H. (2004) Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium. Geochimica et Cosmochimica Acta, v.68, p.3251-3260. https://doi.org/10.1016/j.gca.2004.03.004
  11. Liu, C., Kota, S., Zachara, J.M., Fredrickson, J.K. and Brinkman, C.K. (2001) Kinetic analysis of the bacterial reduction of goethite. Environmental Science and Technology, v.35, p.2482-2490. https://doi.org/10.1021/es001956c
  12. Newman, D.K. and Kolter, R. (2000) A role for excreted quinones in extracellular electron transfer. Nature, v.405, p.93-97.
  13. Paterson, J.H. and Krivanek, O.L. (1990) ELNES of 3d transition-metal oxides, II. Variations with oxidation state and crystal structure. Ultramicroscopy, v.32, 319. https://doi.org/10.1016/0304-3991(90)90078-Z
  14. Roden, E.E. and Zachara, J.M. (1996) Microbial reduction of crystalline Fe(III) oxides: influence of oxide surface area and potential for cell growth. Environmental Science and Technology, v.30, p.1618-1628. https://doi.org/10.1021/es9506216
  15. Taft, J. and Krivanek, O.L. (1982) Site-Specific Valence Determination by Electron Energy-Loss Spectrosocopy. Physical Review Letters, v.48, p.560-563. https://doi.org/10.1103/PhysRevLett.48.560
  16. Tazaki, K. and Asada, R. (2001) Microbes associated with clay minerals: formation of bio-halloysite. In E.A. Dominguez, G.R. Mas, and F. Cravero, Eds. A clay odyssey, p. 569-576. Elservier, Amsterdam, Netherlands.
  17. van Aken, P.A., Liebscher, B., and Styrsa, V.J. (1998) Quantitative determination of iron oxidation states in minerals using Fe L-2,L-3-edge electron energy-loss near-edge structure spectroscopy. Physics and Chemistry of Minerals, v.25, n.5, p.323-327. https://doi.org/10.1007/s002690050122

Cited by

  1. Electron Energy Loss Spectroscopy (EELS) Application to Mineral Formation vol.29, pp.2, 2016, https://doi.org/10.9727/jmsk.2016.29.2.73